Lidé Jiří Hozman (FP TUL Repo)
Jiří Hozman (FP TUL Repo)
Zaměstnanec: Fakulta přírodovědně-humanitní a pedagogická
učo: 499
repozitar
cz
Stať ve sborníku
-
HOZMAN, Jiří a Martina SIMUNKOVÁ. DG Method for the Numerical Solution of the State Problem in Shape Optimization. Online. In Pasheva V., Popivanov N., Venkov G. AIP Conference Proceedings 1690. Melville, NY,USA: AMER INST PHYSICS, 2015, s. nestránkováno, 8 s. ISBN 978-0-7354-1337-5. Dostupné z: https://dx.doi.org/10.1063/1.4936701.
-
HOZMAN, Jiří a Tomáš TICHÝ. A note on the treatment of boundary conditions for the vanilla option pricing problem discretized by DG method. In Culik, M. MANAGING AND MODELLING OF FINANCIAL RISKS: 7TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III. Ostrava: VSB-TECH UNIV OSTRAVA, 2014, s. 282-290. ISBN 978-80-248-3631-7.
-
HOZMAN, Jiří. A priori error estimates of the discontinuous Galerkin method for the MEW equation. Online. In Venkov, G; Pasheva, V. APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14), AIP Conference Proceedings 1631. Melville, NY, USA: AMER INST PHYSICS, 2014, s. 93-98. ISBN 978-0-7354-1270-5. Dostupné z: https://dx.doi.org/10.1063/1.4902463.
-
HOZMAN, Jiří. Analysis of the Discontinuous Galerkin Method Applied to the European Option Pricing Problem. Online. In Pasheva, V; Venkov, G. 39TH INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE13), AIP Conference Proceedings 1570. Melville, NY, USA: AMER INST PHYSICS, 2013, s. 227-234. ISBN 978-0-7354-1198-2. Dostupné z: https://dx.doi.org/10.1063/1.4854760.
-
HOZMAN, Jiří. Valuing barrier options using the adaptive discontinuous Galerkin method. In PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16. Praha: Institute of Mathematics, Academy of Sciences of the Czech Republic, 2013, s. 94-99. ISBN 978-80-85823-62-2.
Článek v odborném periodiku
-
HOZMAN, Jiří; Josef BRADÁČ a Jan KOVANDA. NEURAL TISSUE RESPONSE TO IMPACT - NUMERICAL STUDY OF WAVE PROPAGATION AT LEVEL OF NEURAL CELLS. NEURAL NETWORK WORLD. 2014, roč. 24, č. 2, s. 157-176. ISSN 1210-0552. Dostupné z: https://dx.doi.org/10.14311/NNW.2014.24.010.
-
HOZMAN, Jiří a Jan LAMAČ. Analysis and application of the discontinuous Galerkin method to the RLW equation. BOUNDARY VALUE PROBLEMS. 2013, neuveden, 7 May 2013, s. 1-20. ISSN 1687-2770.