Přehled o publikaci
2024
Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO
KHAN, Rayyan Tariq; Petra POKORNÁ; Jan DVORSKÝ; Simeon BORKO; Adam DOBIÁŠ et. al.Základní údaje
Originální název
Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO
Autoři
KHAN, Rayyan Tariq; Petra POKORNÁ; Jan DVORSKÝ; Simeon BORKO; Adam DOBIÁŠ; Joan PLANAS IGLESIAS; Stanislav MAZURENKO; Ihor AREFIEV; José Gaspar RANGEL PAMPLONA PIZARRO PINTO; Veronika SZOTKOWSKÁ; Jaroslav ŠTĚRBA; Jiří DAMBORSKÝ; Ondřej SLABÝ a David BEDNÁŘ
Vydání
Computational and Structural Biotechnology Journal, Amsterdam, Elsevier, 2024, 2001-0370
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizace
Přírodovědecká fakulta – Masarykova univerzita – Repozitář
UT WoS
001372518900001
EID Scopus
2-s2.0-85210774075
Klíčová slova česky
Precision oncology; Webserver; Mutation; Prediction; Treatment; Next-generation sequencing; Virtual screening; Oncogenicity; Automation; Machine learning
Klíčová slova anglicky
Precision oncology; Webserver; Mutation; Prediction; Treatment; Next-generation sequencing; Virtual screening; Oncogenicity; Automation; Machine learning
Návaznosti
LX22NPO5102, projekt VaV. MUNI/A/1625/2023, interní kód Repo. NU20-03-00240, projekt VaV. TN02000109, projekt VaV. 857560, interní kód Repo. CZECRIN IV, velká výzkumná infrastruktura. RECETOX RI II, velká výzkumná infrastruktura.
Změněno: 26. 2. 2025 00:51, RNDr. Daniel Jakubík
Anotace
V originále
Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder nonspecialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.