J 2024

Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO

KHAN, Rayyan Tariq; Petra POKORNÁ; Jan DVORSKÝ; Simeon BORKO; Adam DOBIÁŠ et. al.

Základní údaje

Originální název

Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO

Autoři

KHAN, Rayyan Tariq; Petra POKORNÁ; Jan DVORSKÝ; Simeon BORKO; Adam DOBIÁŠ; Joan PLANAS IGLESIAS; Stanislav MAZURENKO; Ihor AREFIEV; José Gaspar RANGEL PAMPLONA PIZARRO PINTO; Veronika SZOTKOWSKÁ; Jaroslav ŠTĚRBA; Jiří DAMBORSKÝ; Ondřej SLABÝ a David BEDNÁŘ

Vydání

Computational and Structural Biotechnology Journal, Amsterdam, Elsevier, 2024, 2001-0370

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizace

Přírodovědecká fakulta – Masarykova univerzita – Repozitář

UT WoS

001372518900001

EID Scopus

2-s2.0-85210774075

Klíčová slova česky

Precision oncology; Webserver; Mutation; Prediction; Treatment; Next-generation sequencing; Virtual screening; Oncogenicity; Automation; Machine learning

Klíčová slova anglicky

Precision oncology; Webserver; Mutation; Prediction; Treatment; Next-generation sequencing; Virtual screening; Oncogenicity; Automation; Machine learning

Návaznosti

LX22NPO5102, projekt VaV. MUNI/A/1625/2023, interní kód Repo. NU20-03-00240, projekt VaV. TN02000109, projekt VaV. 857560, interní kód Repo. CZECRIN IV, velká výzkumná infrastruktura. RECETOX RI II, velká výzkumná infrastruktura.
Změněno: 26. 2. 2025 00:51, RNDr. Daniel Jakubík

Anotace

V originále

Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder nonspecialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.

Přiložené soubory