Přehled o publikaci
2024
Liquid biopsy of peripheral blood using mass spectrometry detects primary extramedullary disease in multiple myeloma patients
VLACHOVÁ, Monika, Lukáš PEČINKA, Jana GREGOROVÁ, Lukáš MORÁŇ, Tereza RŮŽIČKOVÁ et. al.Základní údaje
Originální název
Liquid biopsy of peripheral blood using mass spectrometry detects primary extramedullary disease in multiple myeloma patients
Autoři
VLACHOVÁ, Monika, Lukáš PEČINKA, Jana GREGOROVÁ, Lukáš MORÁŇ, Tereza RŮŽIČKOVÁ, Petra KOVAČOVICOVÁ, Martina ALMÁŠI, Luděk POUR, Martin ŠTORK, Roman HÁJEK, Tomáš JELÍNEK, Tereza POPKOVÁ, Marek VEČEŘA, Josef HAVEL, Petr VAŇHARA a Sabina ŠEVČÍKOVÁ
Vydání
SCIENTIFIC REPORTS, England, NATURE PORTFOLIO, 2024, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizace
Lékařská fakulta – Masarykova univerzita – Repozitář
UT WoS
001318393400059
EID Scopus
2-s2.0-85201286837
Klíčová slova anglicky
liquid biopsy; mass spectrometry; multiple myeloma
Návaznosti
EH22_008/0004644, projekt VaV. LX22NPO5102, projekt VaV. MUNI/A/1575/2023, interní kód Repo. MUNI/A/1587/2023, interní kód Repo. MUNI/A/1598/2023, interní kód Repo. NU21-03-00076, projekt VaV.
Změněno: 14. 2. 2025 00:50, RNDr. Daniel Jakubík
Anotace
V originále
Multiple myeloma (MM) is the second most prevalent hematological malignancy, characterized by infiltration of the bone marrow by malignant plasma cells. Extramedullary disease (EMD) represents a more aggressive condition involving the migration of a subclone of plasma cells to paraskeletal or extraskeletal sites. Liquid biopsies could improve and speed diagnosis, as they can better capture the disease heterogeneity while lowering patients’ discomfort due to minimal invasiveness. Recent studies have confirmed alterations in the proteome across various malignancies, suggesting specific changes in protein classes. In this study, we show that MALDI-TOF mass spectrometry fingerprinting of peripheral blood can differentiate between MM and primary EMD patients. We constructed a predictive model using a supervised learning method, partial least squares-discriminant analysis (PLS-DA) and evaluated its generalization performance on a test dataset. The outcome of this analysis is a method that predicts specifically primary EMD with high sensitivity (86.4%), accuracy (78.4%), and specificity (72.4%). Given the simplicity of this approach and its minimally invasive character, this method provides rapid identification of primary EMD and could prove helpful in clinical practice.