Přehled o publikaci
2023
TRANSLATION CONTROL AND CO-TRANSLATIONAL PROCESSES IN HEALTH ANDDISEASE
TĚŠINA, PetrBasic information
Original name
TRANSLATION CONTROL AND CO-TRANSLATIONAL PROCESSES IN HEALTH ANDDISEASE
Name in Czech
KONTROLA TRANSLACE A KOTRANSLAČNÍ PROCESY VE ZDRAVÍ A NEMOCI
Authors
TĚŠINA, Petr
Edition
2nd Meeting of the National Institute of Virology and Bacteriology (NIVB) in Kutná Hora, 2023
Other information
Language
English
Type of outcome
Konferenční abstrakta
Country of publisher
Czech Republic
Confidentiality degree
is not subject to a state or trade secret
References:
Organization
Středoevropský technologický institut – Repository – Repository
Keywords (in Czech)
kontrola translace; eIF5A; Rqc2; Ltn1
Keywords in English
translation control; eIF5A; Rqc2; Ltn1
Links
LX22NPO5103, research and development project.
Changed: 12/12/2023 03:22, RNDr. Daniel Jakubík
Abstract
V originále
Co-translational quality control is triggered as aresponse to translational stalling events. Yet, different molecular mechanisms are employed for the recognition of these stalls and to trigger downstream rescue and quality control pathways. While the recognition of individual stalled ribosomes is poorly understood, the use of collided ribosomes as a proxy for the recognition of translation problems in the cell is conserved from bacteria to humans1–3. In eukaryotes, co-translational quality-control processes triggered by ribosome collisions accomplish several tasks and eventually trigger stress response signalling pathways4. These tasks include the degradation of aberrant mRNAs, the degradation of potentially deleterious nascent peptides, the ribosomal subunit recycling and tRNA recycling. Collided eukaryotic ribosomes are cleared via subunit dissociation by the ribosome quality control trigger complex (RQT/ASCC)5,6. Subsequently, the ribosome-associated quality control takes place on the released large ribosomal subunit and ensures the degradation of the potentially toxic nascent peptide7. We mainly use structural analysis by cryo-EM to gain mechanistic understanding of these co-translational quality control events. To that end, we employ cell-free in vitrotranslation systems derived from bacteria, yeast and human cells in order to recapitulate ribosomal stalls and to isolate collided ribosomes. On this basis, we can reconstitute recognition, rescue and other processes in vitro. These processes include ubiquitination by Hel2 and ribosome dissociation by RQT in the yeast system or mRNA cleavage by the endonuclease SmrB in E. coli. Moreover, we use genomically tagged quality control factors as bait proteins for in vivoexpression and subsequent isolation of corresponding quality control intermediates after triggering ribosomal stalls. Resulting complexes are then used for structural cheracterization by single particle cryo-EM, which usually yields ensembles of structures representing distinct functional intermediates with specific conformation and/or composition8. The most recent findings elucidating the molecular mechanisms underlying co-translational quality control will be presented along with future plans in research of host-pathogen interactions involved in translation control.