Přehled o publikaci
2014
A note on the treatment of boundary conditions for the vanilla option pricing problem discretized by DG method
HOZMAN, Jiří a Tomáš TICHÝZákladní údaje
Originální název
A note on the treatment of boundary conditions for the vanilla option pricing problem discretized by DG method
Autoři
HOZMAN, Jiří (203 Česká republika, garant, domácí) a Tomáš TICHÝ (203 Česká republika)
Vydání
Ostrava, MANAGING AND MODELLING OF FINANCIAL RISKS: 7TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III, od s. 282-290, 9 s. 2014
Nakladatel
VSB-TECH UNIV OSTRAVA
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
50200 5.2 Economics and Business
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/46747885:24510/14:#0001180
Organizace
Fakulta přírodovědně-humanitní a pedagogická – Technická univerzita v Liberci – Repozitář
ISBN
978-80-248-3631-7
UT WoS
000350605800034
Klíčová slova anglicky
Option; valuation; discontinuous Galerkin approach; boundary condition; implied volatility
Změněno: 7. 4. 2015 14:43, Jiří Hozman
Anotace
V originále
The valuation of a wide range of option contracts using the different financial models has acquired increasing popularity in modern financial theory and practice. This paper is dedicated to the plain vanilla option pricing problem, driven according to the one-dimensional Black-Scholes equation, and the main attention is paid to the treatment of boundary conditions. The whole system is discretized by the discontinuous Galerkin method combined with the implicit Euler scheme for the temporal discretization. Three concepts of boundary conditions are mentioned here such as Dirichlet, Neumann and transparent boundary condition. Moreover, their influence on the approximate solution together with the localization of an underlying asset and a strike price is studied. The preliminary numerical results are presented on real data of options on German DAX index obtained for 15SEPT2011 with implied volatilities and compared for the different treatments of boundary conditions to each other.