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1

Vectors, tensors, metric

Albert Einstein made a revolutionary step when he considered to treat gravity in
pure geometrical notions. He changes the notion of gravitational force with the
notion of curved geometry. Therefore understanding properties of the geometric
objects like vectors, tensors and metric is crucial [1, 3, 9].

E1 Contravariant components of a vector ~A in the coordinate system x
i are given

as
~A = (A1

, A
2) =

✓
2x2,

1

2
x
1

◆
. (1.1)

Determine the components of ~A with respect to coordinates xi
0
, which are

given via change of coordinates

x
10 = x

1 sinx2, (1.2)

x
20 = x

1 cosx2. (1.3)

I Solution: The Jacobi matrix reads
"
@x

i0

@xj

#
=

"
@x10

@x1
@x10

@x2

@x20

@x1
@x20

@x2

#
=


sinx2 x

1 cosx2

cosx2 �x1 sinx2
�
. (1.4)

The components of Ai and A
i0 of the vector ~A are related according to the

formula

A
i0 =

@x
i0

@xj
A

j
, (1.5)
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which gives us:

A
10 =

@x
10

@x1
A

1 +
@x

10

@x2
A

2 = 2x2 sinx2 +
1

2
(x1)2 cosx2 (1.6)

and similarly

A
20 =

@x
20

@x1
A

1 +
@x

20

@x2
A

2 = 2x2 cosx2 � 1

2
(x1)2 sinx2. (1.7)

E2 Let the transformation x! x
0 be given as

x
10 = x

1 � x
2
, (1.8)

x
20 = x

1 + x
2
. (1.9)

Further, let the contravariant components of the tensor T with respect to x

be as

T
11 = 1, T 12 = T

21 = 0 a T
22 = %o. (1.10)

What are the contravariant components of this tensor with respect to coordi-
nates x0?

I Solution: In this case the Jacobi matrix reads
"
@x

i0

@xj

#
=

"
@x10

@x1
@x10

@x2

@x20

@x1
@x20

@x2

#
=


1 �1
1 1

�
. (1.11)

Kontravariant components of the tensor T transforms according to formula

T
i0j0 =

@x
i0

@xi

@x
j0

@xj
T
ij
. (1.12)

Hence, we obtain the result

T
1010 = T

11 + T
22 = 1 + %o, (1.13)

T
1020 = T

11 � T
22 = 1� %0, (1.14)

T
2010 = T

11 � T
22 = 1� %0, (1.15)

T
2020 = T

11 + T
22 = 1 + %0. (1.16)
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Vectors, tensors, metric

E3 Again, let us consider a change of coordinates x ! x
0 described this time via

equations

x
10 = 2x1 + 3x2 � x

3
, (1.17)

x
20 = �x1 � 2x2 + x

3
, (1.18)

x
30 = x

1
. (1.19)

Find the Jacobi matrix for this transformation and corresponding matrix for
the inverse transformation.

I Solution: The Jacobi matrix is clearly as follows:
"
@x

i0

@xj

#
=

2

4
2 3 �1
�1 �2 1
1 0 0

3

5 (1.20)

Using Gaussian elimination method we determine the inverse matrix:


@x

i

@x0j

�
=

2

4
0 0 1
1 1 1
2 3 �1

3

5 . (1.21)

E4 The relation between Boyer-Lindquist coordinates and Kerr ‘ingoing’ coordi-
nates are given as

et0 = et, (1.22)

eu0 = �r2er + r
2 r

2 + a
2

�
(et + ⌦e') , (1.23)

em0 = � 1

sin ✓
e✓, (1.24)

e'0 = e'. (1.25)

Find the Jacobi matrix for the inverse transformation.

I Solution: Comparing a general transformation relationship between the base
vectors

ei0 =
@x

i

@xi
0 ei (1.26)

with the transformation (1.22)-(1.25) we obtain a Jacobi matrix in the form


@x

a

@xb
0

�
=

2

6664

1 r2(r2+a2)
� 0 0

0 �r2 0 0
0 0 � 1

sin2 ✓
0

0 r2(r2+a2)
� ⌦ 0 1

3

7775
(1.27)
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Employing Gaussian elimination method we obtain the Jacobi matrix for the
inverse transform as

"
@x

b0

@xa

#
=

2

6664

1 1+a2u02

�0 0 0
0 �u02 0 0
0 0 �

p
1�m02 0

0 au02

�0 0 1

3

7775
. (1.28)

E5 Derive symmetric and anti-symmetric parts of a tensor Tab which in two-
dimensional space has components

T11 = 1, T12 = %, T21 = �2% a T22 = p. (1.29)

I Solution: The symmetric part is given as

T(ab) =
1

2
(Tab + Tba) . (1.30)

Which yields the result

T(11) = 1, T(12) = T(21) = �
1

2
% a T(22) = p. (1.31)

On the other hand, the anti-symmetric part reads

T[ab] =
1

2
(Tab � Tba) , (1.32)

which gives us

T[11] = 0, T(12) = �T(21) =
3

2
% a T(22) = 0. (1.33)

E6 The line element on a 2-sphere is given as

dl2 = d✓2 + sin2 ✓d'2
. (1.34)

At the point P = (✓0,'0) a vector has contravariant components in the cor-
responding tangent space with respect to coordinate basis as follows: V =
(V ✓

, V
') = (2'0,�✓0). Determine its covariant components Vi at the point P .

I Solution: The relationship between contravariant and covariant components
is

Vi = gijV
j
, (1.35)
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where the components of the metric tensor gij are

[gij ] =


1 0
0 sin2 ✓

�
. (1.36)

Hence, at point P we have

V✓ = g✓jV
j = g✓✓V

✓ + g✓'V
' = 2'0 (1.37)

and
V' = g'jV

j = g'✓V
✓ + g''V

' = �✓0 sin2 ✓0. (1.38)

E7 Prove that

(a) two-dimensional metric space with a metric

ds2 = �v2du2 + dv2 (1.39)

is a flat 2-D Minkowski spacetime with a line element

ds2 = �dt2 + dx2. (1.40)

(b) for unaccelerated particle the covariant component of a 4-momentum pu

is constant but pv is not.

I Solution:

(a) It is easy to see that the transformation (u, v)! (t, x) given by

t = v sinhu, (1.41)

x = v coshu (1.42)

transform (1.40) into (1.39). Infinitesimal increments dx and dt are given
as

dt = dv sinhu+ v coshu du, (1.43)

dx = dv coshu+ v sinhu du. (1.44)

Substituting this into (1.40) yields the result

ds2 = �dt2 + dx2 = · · · = �v2du2 + dv2. (1.45)
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(b) The Hamiltonian which leads to geodesic equations has a form

H =
1

2
g
ab
papb =

1

2
(pv)

2 � 1

2
v
�2(pu)

2
. (1.46)

From Hamilton equations we see

dpu
d�

= �@H

@u
= 0 ) pu = const, (1.47)

dpv
d�

= �@H

@v
= �v�3(pu)

2 ) pv 6= const. (1.48)

E8 Prove that the conformal transformation of the metric, i.e. gab ! f(xc)gab for
an arbitrary function f , conserves angles. Show that all null curves remain
null after the transformation.

I Solution: At a given point, local angle ↵ between two vectors A, B is given
by a relation

cos↵ =
A ·B
|A||B| =

gabA
a
B

b

p
gabA

aAb
p
gabB

aBb
. (1.49)

Calculating the angle ↵0 between A, B with respect to metric f gab, we obtain

cos↵0 =
fgabA

a
B

b

p
fgabA

aAb
p
fgabB

aBb
=

f

f

gabA
a
B

b

p
gabA

aAb
p
gabB

aBb
= cos↵. (1.50)

Further, let k be a null vector, that is a vector which components satisfy

gabk
a
k
b = 0. (1.51)

In conformal metric, however

fgabk
a
k
b = 0. (1.52)

Hence the null vectors remains null after a conformal transformation.

E9 Determine a magnitude of 4-velocity and 4-momentum with contravariant
components

U
i =

dxi

d⌧
a P

i = mU
i
, (1.53)

where m is the rest mass of a particle and ⌧ is its proper time.

I Solution: In a metric space, a square of the vector U = U
iei reads

U
2 = U ·U = gijU

i
U

j = gij
dxi

d⌧

dxj

d⌧
. (1.54)
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However, at the same time

ds2 = gijdx
idxj ) ds2

d⌧2
= gij

dxi

d⌧

dxj

d⌧
. (1.55)

The relationship between spacetime interval ds and proper time d⌧ is (with
the speed of light c = 1)

ds2 = �d⌧2. (1.56)

These equations points to the result

U
2 = gijU

i
U

j = �1 a P
2 = gijP

i
P

j = �m2
. (1.57)

– 7 –



2

Covariant derivative,

connection, curvature

In order to describe change of a vector or a tensor in curved spacetime we need
a new operation of derivative. Here, the properties of covariant derivative,
connection and curvature are practised. For detailed definitions see [1, 3, 9].

E1 Determine transformation properties of a geometrical object with com-
ponents @V i

/@x
j

I Solution: Let us consider a transformation x
0 ! x together with its

inverse x! x
0. We calculate

@V
i0

@xj
0 =

@x
i

@xj
0
@V

i0

@xi
=

@x
i

@xj
0
@

@xi

 
@x

i0

@xj
V

j

!

=
@x

i

@xj
0

 
@x

i0

@xj

@V
j

@xi
+ V

j @
2
x
i0

@xi@xj

!

=
@x

i

@xj
0
@x

i0

@xj

@V
j

@xi
+

@x
i

@xj
0
@
2
x
i0

@xi@xj
V

j
. (2.1)

First term of the resulting transformation relation is a transformation
of a (1,1) tensor but the non-zero second term causes that the partial
derivatives of vector components do not behave as a tensor.

E2 From the definition of covariant derivative determine a transformation
rule for components of a�ne connection �i

jk.
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Covariant derivative, connection, curvature

I Solution: Covariant derivative of contravariant components of a vector
V is

riV
j = @iV

j + �j
kiV

k
. (2.2)

Considering a change of coordinates x0 ! x we have

ri0V
j0 = @i0V

j0 + �j0

k0i0V
k0

=
@x

j0

@xj

@x
i

@xi
0
@V

j

@xi
+

@x
i

@xi
0
@
2
x
j0

@xi@xj
V

j +
@x

k0

@xk
�j0

k0i0V
k

= |from def. (2.2)| = @x
j0

@xj

@x
i

@xi
0

✓
@V

j

@xi
+ �j

kiV
k

◆
. (2.3)

Hence, we get

@x
j0

@xj

@x
i

@xi
0 �

j
kiV

k =
@x

i

@xi
0
@
2
x
j0

@xi@xj
V

j +
@x

k0

@xk
�j0

k0i0V
k
, (2.4)

which after some algebra yields a result

�j0

k0i0 =
@x

k

@xk
0
@x

j0

@xj

@x
i

@xi
0 �

j
ki �

@x
k

@xk
0
@x

i

@xi
0
@
2
x
j0

@xi@xk
. (2.5)

It is clear that the components of a�ne connection do not transform as
a tensor.

E3 Determine how the components of an a�ne connection transform.

I Solution: Let us consider a free falling observer with coordinates ⇠↵. A
free particle with respect to this observer will obey equations of motion

d2⇠↵

d⌧2
= 0. (2.6)

From the point of view of an observer on the surface of a star (for example)
with coordinates x↵ the equations of motion will be as follows. Since the
coordinates ⇠↵ are functions of x↵ from (2.6) we get

d

d⌧

✓
d⇠↵

d⌧

◆
=

d

d⌧

✓
@⇠

↵

@xµ

dxµ

d⌧

◆

=
@⇠

↵

@xµ

d2xµ

d⌧2
+

@
2
⇠
↵

@x⌫@xµ

dxµ

d⌧

dx⌫

d⌧
= 0 (2.7)

We multiply this equation by @x�/@⇠↵ to obtain

d2x�

d⌧2
+ ��

µ⌫
dxµ

d⌧

dx⌫

d⌧
, (2.8)
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where we introduced

��
µ⌫ =

@x
�

@⇠↵

@
2
⇠
↵

@xµ@x⌫
. (2.9)

Further, let us consider a transformation of coordinates x0µ = x
0µ(x⌫) and

from (2.9) we determine how the a�ne connection transforms.

First, let us establish following relations

@x
µ0

@⇠i
=

@x
µ0
(x�(⇠j))

@⇠i
=

@x
µ0

@x�

@x
�

@⇠i
(2.10)

and
@⇠

i

@x�
0 =

@⇠
i(x↵(x↵

0
))

@x�
0 =

@⇠
i

@x�

@x
�

@x�
0 . (2.11)

Using these we calculate:

�↵0

�0�0 =
@x

↵0

@⇠�

@
2
⇠
�

@x�
0
@x�

0 =
@x

↵0

@x↵

@x
↵

@⇠�

@

@x�
0

✓
@x

�

@x�
0
@⇠

�

@x�

◆

=
@x

↵0

@x↵

@x
↵

@⇠�

✓
@⇠

�

@x�

@
2
x
�

@x�
0
@x�

0 +
@x

�

@x�
0
@x

�

@x�
0

@
2
⇠
�

@x�@x�

◆

=
@x

↵0

@x↵

@x
�

@x�
0
@x

�

@x�
0 �

↵
�� +

@x
↵0

@x↵

@
2
x
↵

@x�
0
@x�

0 . (2.12)

We obtained and alternative form of a transformation rule for components
of an a�ne connection (compare with (2.5)).

E4 Show that the quantity

Aµ⌫ =
@Aµ

@x⌫
� @A⌫

@xµ
(2.13)

transforms as a tensor.

I Solution: Partial derivatives of covariant components of a vector trans-
form as

@A↵0

@x�
0 =

@x
�

@x�
0
@A↵0

@x�
=

@x
�

@x�
0

@

@x�

✓
@x

↵

@x↵
0 A↵

◆

=
@x

↵

@x↵
0
@x

�

@x�
0
@A↵

@x�
+

@
2
x
↵

@x↵
0
@x�

0 A↵. (2.14)
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Covariant derivative, connection, curvature

Now it is a simple matter of putting this expression into (2.13) to obtain:

A↵0�0 =
@A↵0

@x�
0 �

@A�0

@x↵
0

=
@x

↵

@x↵
0
@x

�

@x�
0
@A↵

@x�
+

@
2
x
�

@x↵
0
@x�

0 A�

� @x
�

@x�
0
@x

↵

@x↵
0
@A�

@x↵
� @

2
x
�

@x�
0
@x↵

0 A�

=
@x

↵

@x↵
0
@x

�

@x�
0

✓
@A↵

@x�
�

@A�

@x↵

◆
=

@x
↵

@x↵
0
@x

�

@x�
0 A↵� . (2.15)

As we see, the quantity defined in (2.13) indeed transforms as a tensor!

E5 Determine components of a metric connection on a 2-sphere, which has
a line element

dl2 = d✓2 + sin2 ✓d'2
. (2.16)

I Solution: Components of a metric connection in coordinate basis are
given by a formula

�i
jk =

1

2
g
is(�gjk,s + gsj,k + gks,j) (2.17)

from which we easily obtain all non-zero components as

�✓
'' = � cos ✓ sin ✓, �'

✓' = �'
'✓ = cotg ✓. (2.18)

E6 Calculate elements of a Riemann tensor, a Ricci tensor and a Ricci scalar
given the following line elements:

(a)
dl2 = dr2 + r

2d'2
, (2.19)

(b)
dl2 = d✓2 + sin2 ✓ d'2

. (2.20)

I Solution: The components of a Riemann tensor are by definition

R
i
jkl ⌘ �i

jl,k � �i
jk,l + �s

jl�
i
ks � �s

jk�
i
ls, (2.21)

while the components of a Ricci tensor and of a Ricci scalar can be ob-
tained as

Rjl = R
i
jil, R = R

i
i = g

ij
Rij . (2.22)
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In two-dimensional space there is only one independent component of a
Riemann tensor. The remaining non-zero components follows from its
symmetries:

Rijkl = �Rijlk = �Rjikl = Rklij , (2.23)

R
i
jkl +R

i
ljk +R

i
klj ⌘ 0. (2.24)

By direct calculation we get

(a)
R

i
jkl = 0, Rik = 0 and R = 0 for all i, j, k, l. (2.25)

Thus, we get a flat space.
(b) The independent component is, e.g.

R
✓
'✓' = sin2 ✓. (2.26)

Hence,

R'' = R
i
'i' = R

✓
'✓' +R

'
''' = sin2 ✓, (2.27)

R✓✓ = R
i
✓i✓ = R

✓
✓✓✓ +R

'
✓'✓ = g

''
g✓✓R

✓
'✓' =

1

sin2 ✓
sin2 ✓ = 1 (2.28)

and

R = g
lj
Rlj = g

''
R'' + g

✓✓
R✓✓ =

1

sin2 ✓
sin2 ✓ + 1 = 2. (2.29)
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3

Di↵erential geometry,

Maurer-Cartan structure

equations

!µ⌫

The concept of di↵erental forms enables one a coordinate independent defini-
tion of geometric object. Introduction of tetrades simplifies analysis of physical
phenomena in strong gravity since there physical laws take, locally, the same
form as in flat spacetime [1, 3, 9, 7].

Let us consider a tetrade of base vector ea, where a = (0, 1, 2, 3), which does
not need to be orthonormal. A dual tetrad of base 1-forms !a is defined via
relation

ea · !b = �
a
b , (3.1)

where �ab is a four-dimensional Kronecker’s delta. The spacetime interval is
then given as

ds2 = gab!
a
!
b
, (3.2)

where
gab = ea · eb = g↵�e

↵
ae

�
b (3.3)

are tetrad components of the metric. Usually, we choose an orthonormal basis
so that gab = ⌘ab = diag(�1, 1, 1, 1).

In curved spacetimes an important role is played by the spin connection ⌦a
b,

which are connected to tetrad components of Christo↵el’s symbols �a
bc via

– 13 –
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relationship
⌦a

b = �a
bc!

c
. (3.4)

The exterior derivative of base vectors is defined via spin connection:

dea = eb ⌦ ⌦b
a. (3.5)

Then, exterior derivative of the metric satisfies

dgab = ⌦ab + ⌦ba. (3.6)

For the spin connection there an important 1. Maurer-Cartan structure equa-
tion, which in the case of torsion-free spacetime (with metric connection) has
a form

d!a = �⌦a
b ^ !

b
, (3.7)

where ^ indicates exterior product of 1-forms.

To describe a curved spacetime is useful to introduce 2-forms of curvative,
which are related with tetrad components of Riemann’s tensor via relation

Ra
b =

1

2
R

a
bcd !

c ^ !
d
. (3.8)

These 2-forms then satisfy 2. Maurer Cartan structure equation

Ra
b = d⌦a

b + ⌦a
c ^ ⌦c

b. (3.9)

E1 Using Maurer-Cartan structure equations determine a spin connection,
2-forms of curvature and based on those calculate tetrad components of
Einstein tensor for Friedmann closed universe.

I Solution: Spacetime interval between two close events in Friedmann
closed universe has a form

ds2 = �dt2 + a(t)2[d�2 + sin2 �(d✓2 + sin2 ✓d'2)], (3.10)

where (�, ✓, ') are co-moving space coordinates and t is a cosmic time
as perceived by a typical observer carried away by cosmic expansion.
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Di↵erential geometry, Maurer-Cartan structure equations

Orthonormal tetrad of base 1-form of such an observer is then given as

!
t̂ = dt, (3.11)

!
�̂ = ad�, (3.12)

!
✓̂ = a sin�d✓, (3.13)

!
'̂ = a sin� sin ✓d'. (3.14)

With respect to this orthonormal base (gab = ⌘ab) the spin connection is
antisymmetric (viz (3.6)): ⌦ab = �⌦ba. Then, there exist 6 independent
components of a spin connection, which are determined by 1. Maurer-
Cartan structure equation (3.7) using antisymmetry of exterior product
and the property of the exterior derivative, namely d2 = 0 (Poincaré
lemma: the boundary of the boundary is zero):

⌦k̂
t̂

= ⌦t̂
k̂
=

ȧ

a
!
k̂
, k = {�, ✓, '}, (3.15)

⌦✓̂
�̂ = �⌦�̂

✓̂
=

1

a
cotg�!✓̂ = cos�d✓, (3.16)

⌦'̂
�̂ = �⌦�̂

'̂ =
1

a
cotg�!'̂ = cos� sin ✓d', (3.17)

⌦'̂

✓̂
= �⌦✓̂

'̂ =
1

a sin�
cotg ✓!'̂ = cos ✓d'. (3.18)

The 2-forms of curvature can be determined by putting the spin con-
nection into 2. Maurer-Cartan structure equation (3.9). The non-zero
components are

Rt̂
k̂

=
ä

a
!
t̂ ^ !

k̂
, k = {�, ✓, '}, (3.19)

Rk̂
l̂

=

"✓
ȧ

a

◆2

+
1

a2

#
!
k̂ ^ !

l̂
, k, l = {�, ✓, '}, k 6= l. (3.20)

Non-zero components of a Riemann tensor in orthonormal tetrad can be
extracted directly from the relation (3.8). We get:

R
t̂
�̂t̂�̂

= R
t̂
✓̂t̂✓̂

= R
t̂
'̂t̂'̂

=
ä

a
, (3.21)

R
�̂

✓̂�̂✓̂
= R

�̂
'̂�̂'̂ = R

✓̂
'̂✓̂'̂

=

✓
ȧ

a

◆2

+
1

a2
. (3.22)
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Contracting Riemann tensor we obtain tetrad components of Ricci tensor
and by its contraction we get Ricci scalar:

Rt̂t̂ = R
k̂
t̂k̂t̂

= �3 ä
a
, (3.23)

R�̂�̂ = R
k̂
�̂k̂�̂

=
ä

a
+ 2

"✓
ȧ

a

◆2

+
1

a2

#
= R✓̂✓̂ = R'̂'̂, (3.24)

R = R
k̂
k̂
= 6

"
ä

a
+

✓
ȧ

a

◆2

+
1

a2

#
. (3.25)

Finally, the components of the Einstein tensor in orthonormal tetrad are
determined via Gâb̂ = Râb̂ � (1/2)⌘âb̂R:

Gt̂t̂ = 3

"✓
ȧ

a

◆2

+
1

a2

#
, (3.26)

G�̂�̂ = G✓̂✓̂ = G'̂'̂ = �
"
2
ä

a
+

✓
ȧ

a

◆2

+
1

a2

#
. (3.27)

E2 Using Maurer-Cartan structure equations determine the components of
Einstein tensor in Schwarzschild spacetime. Use an orthonormal basis.

I Solution: Spacetime interval between two neighbouring events in Schwarzschild
spacetime has a form

ds2 = �e2↵(r)dt2 + e2�(r)dr2 + r
2(d✓2 + sin2 ✓d'2). (3.28)

The orthonormal tetrad of base 1-forms reads:

!
t̂ = e↵dt, (3.29)

!
r̂ = e�dr, (3.30)

!
✓̂ = rd✓, (3.31)

!
✓̂ = r sin ✓d'. (3.32)

The ensuing calculation follows the same beats as in the previous example.
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Di↵erential geometry, Maurer-Cartan structure equations

The non-zero components of Riemann tensor are, then:

R
t̂
r̂t̂r̂

= �e�2�(↵00 + ↵
02 � ↵

0
�
0), (3.33)

R
t̂
✓̂t̂✓̂

= R
t̂
'̂t̂'̂

= �1

r
↵
0e�2�

, (3.34)

R
r̂
✓̂r̂✓̂

= R
r̂
'̂r̂'̂ =

1

r
�
0e�2�

, (3.35)

R
✓̂
'̂✓̂'̂

=
1

r2
(1� e�2�). (3.36)

Using these we obtain non-zero components of the Einstein tensor as:

Gt̂t̂ =
2

r
�
0e�2� +

1

r2
(1� e�2�), (3.37)

Gr̂r̂ =
2

r
↵
0e�2� � 1

r2
(1� e�2�), (3.38)

G✓̂✓̂ = G'̂'̂ =
1

r
e�2�(r↵00 + r↵

02 � r↵
0
�
0 + ↵

0 � �
0). (3.39)

E3 Let us consider an arbitrary, stationary, axially symmetric spacetime.

(a) Calculate angular velocity for ZAMO observers. (ZAMO = Zero
Angular Momentum Observer)

(b) Tetrad of base 1-forms of a ZAMO observer in Boyer-Lindquist co-
ordinates is given by

!
t̂ = |gtt � !

2
g''|1/2dt (3.40)

!
'̂ = (g'')

1/2(d'� !dt) (3.41)

!
r̂ = (grr)

1/2dr (3.42)

!
✓̂ = (g✓✓)

1/2d✓. (3.43)

Find vectors of dual base.
(c) ZAMO is not an inertial observer. Find its 4-acceleration.
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4

Lie derivative, Killing

vectors*

L
Killing vectors uncover symmetries of the spacetime, they are solutions of the
Killing equation. The symmetries of the spacetime are connected with con-
stants of motion. Using the symmetries one can strongly simplify equations
of motion to get qualitative and quantitative insight into particular physical
problem [1, 3, 9].

E1 Show that Lie derivative of a metric is zero L⇠g = 0 is equivalent to
satisfying Killing equation ⇠µ;⌫ + ⇠⌫;µ = 0.

E2 Show that

(a) a commutator of Killing vector fields is again a Killing vector field,
(b) a linear combination of Killing vectors with constant coe�cients is a
Killing vector too.

E3 Find all Killing vectors of a 2-sphere.

I Solution: A line element on a surface of a sphere can be written in
angular coordinates (✓, ') as:

ds2 = d✓2 + sin2 ✓d'2
. (4.1)

Writting down Killing equation ⇠µ;⌫+⇠⌫;µ = 0 for specific values of indices
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Lie derivative, Killing vectors*

µ, ⌫ gives:

µ = ⌫ = ✓ : @✓⇠✓ = 0, (4.2)

µ = ⌫ = ' : @'⇠' = � sin ✓ cos ✓⇠✓, (4.3)

µ = ✓, ⌫ = ' : @'⇠✓ + @✓⇠' = 2cotg ✓⇠'. (4.4)

The first equation (4.2) is solved as

⇠✓ = f('), (4.5)

where f(') is as yet unknown function. Putting this into (4.3) we obtain

⇠' = �F (') sin ✓ cos ✓ + g(✓), (4.6)

where F (') =
R
f(')d' and g(✓) are again unknown functions. Substi-

tuting for ⇠✓ and ⇠' in (4.4) we get, after some algebra, an equation in
separable form:

df

d'
+ F (') = �

✓
dg

d✓
� 2g cotg ✓

◆
. (4.7)

Since the left side is a function of ' while the right side of ✓, the equality
is maintained only if both sides are equal to the same constant, say k.
Thus, the equation (4.7) reduces to two pieces:

df

d'
+

Z
f(')d' = k, (4.8)

dg

d✓
� 2g cotg ✓ = �k. (4.9)

If we di↵erentiate (4.8) by ' the result is

d2f

d'2
+f(') = 0 �! f(') = a sin'+ b cos', (4.10)

F (') = �a cos'+ b sin'. (4.11)

Plugging f(') into (4.8) we learn that k = 0. Then, the equation (4.9)
is easily solved by the method of separation of variables, which after
integration yields:

g(✓) = c sin2 ✓. (4.12)

Covariant components of a Killing vector are given by (4.5) and (4.6).
After substituting for f, F a g we obtain the result:

⇠✓ = a sin'+ b cos', (4.13)

⇠' = sin' cos'(a cos'� b sin') + c sin2 ✓. (4.14)
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We determine contravariant components through relation ⇠
i = g

ij
⇠j .

Hence, the Killing vector in coordinate basis is given as

⇠ = ⇠
✓ @

@✓
+ ⇠

' @

@'
=

(a sin'+ b cos')
@

@✓
+ [cotg ✓(a cos'� b sin') + c]

@

@'
. (4.15)

We can see that due to the existence of integration constants the Killing
vector can be written as a linear combination of two basic Killing vectors

X1 = sin'
@

@✓
+ cotg ✓ cos'

@

@'
, (4.16)

X2 = cos'
@

@✓
� cotg ✓ cos'

@

@'
, (4.17)

X3 =
@

@'
. (4.18)

These satisfy the commutation relation

[Xi, Xj] = ✏ijkXk, (4.19)

which are analogous to the well-known commutation relations for opera-
tors of angular momentum. Correspondingly, vectors Xi are generators
of the SU(2) group.

E4 If ⇠(x) is a Killing vector field and u a tangent vector to a geodetic, show
that ⇠ · u is a constant along this geodetic.

E5 If ⇠ is a Killing vector and T is a energy-momentum tensor , show that
J
µ = T

µ⌫
⇠⌫ is a conserved quantity. What is the corresponding J in the

case of a timelike Killing vector?
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5

Momentum, spin*

Angular momentum and spin are key concepts describing rotation. In general
relativity one needs covariant equations describing physical quantities. This
section provides examples supporting students understanding of those concepts
[2, 3].

E1 Show that the total angular momentum of an isolated system in Minkowski
spacetime

J
↵� ⌘

Z
(x↵T �0 � x

�
T
↵0)d3x. (5.1)

(a) is a conserved quantity,
(b) is not invariant under the translation by a constant vector a↵.

I Solution: (a) Let us split the conserved charges into spatial components
J
ij – these are consequence of invariance under rotations and, hence,
are angular momenta of the fields – and other three elements J i0, which
represent conserved charges resulting from invariance under boosts. Let
us demonstrate that they are conserved one at the time. For angular
momenta we have

dJ ij

dt
=

d

dt

Z �
x
i
T

j0 � x
j
T

i0
�
d3x =

Z �
x
i
@0T

j0 � x
j
@0T

i0
�
d3x

= �
Z �

x
i
@kT

jk � x
j
@kT

ik
�
d3x =

Z �
T

ji � T
ij
�
d3x = 0. (5.2)

In the second line, we have first used equation of continuity @µT
iµ =

@0T
i0 + @kT

ik = 0 and then we used per partes to move derivatives onto

– 21 –



Problem set for relativistic physics and astrophysics

the xi’s. Finally, the conservation of the angular momenta follows from
symmetry of energy-momentum tensor T ij = T

ji. The conservation of
‘boost charges’ is demonstrated as follows:

dJ i0

dt
=

d

dt

Z �
x
i
T

00 � t T
i0
�
d3x =

Z �
x
i
@0T

00 � T
i0 � t@0T

i0
�
d3x

=

Z �
�xi

@kT
0k � T

i0 + t@kT
ik
�
d3x =

Z �
T

0i � T
i0 + @k(t T

ik)
�
d3x

= 0. (5.3)

Again, in the second line we have used the fact that @µT 0µ = 0 and then
used per partes to move @k onto xi. Then, using the fact that T 0i = T

i0

and further noticing that the last term at the end of the second line is a
boundary term which we assume to vanish, gives us the desired result.

(b) Due to the explicit dependence of J↵� on coordinates in the argument
of the integral a shift x↵ ! x

↵ + a
↵ translates the tensor as

J
↵� ! J

↵� +

Z �
a
↵
T
�0 � a

�
T
↵0
�
d3x = J

↵� + a
↵
P

� � a
�
P

↵
, (5.4)

where P↵ is the total momentum. Obviously, the quantity a↵P � � a
�
P

↵

does not vanish in general and, therefore, J↵� is not invariant under
constant translation of coordinates.

E2 Show that a spin 4-vector in flat spacetime

S↵ ⌘ �
1

2
✏↵���J

��
u
� (5.5)

is

(a) a conserved quantity.
(b) invariant under a tranlastion by a constant vector a↵.

Here, u↵ ⌘ P
↵
/(�P �

P�)1/2 is a 4-velocity of the center of mass and
P

↵ ⌘
R
T
↵0d3x is total momentum.

I Solution: (a) This is obvious since S↵ only depends on invariant charges
J
↵� and P

↵.

(b) While u↵ does not change under constant translation, J↵� does. How-
ever, the change of spin 4-vector

�S
↵ = �1

2
✏↵���

�
a
�
P

� � a
�
P

�
�
u
� = �

p
�P ⌘P⌘✏↵���a

�
u
�
u
� = 0, (5.6)
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vanishes due to antisymmetry of ✏↵���.

E3 Show that a spin 4-vector is orhtogonal to its 4-velocity u↵.

I Solution:

S↵u
↵ = �1

2
✏↵���J

��
u
�
u
↵ = 0 (5.7)

since ✏↵��� = �✏���↵.

E4 Show that for the angular momentum in the center of mass frame it holds
J
↵�

u� = 0:

I Solution: In center of mass frame we have

0 =

Z
x
i
T
00d3x, P

i =

Z
T
0id3x = 0. (5.8)

(Notice that the second equality is a time derivative of the first). There-
fore, in the center of mass frame ui = 0, u0 = �1 and

J
0�
u� = �J00 = 0 (5.9)

J
i�
u� = �J i0 = �

Z �
x
i
T
00 � tT

i0
�
d3x = 0 . (5.10)

E5 Show that a spin vector of a gyroscope, which is free of any external forces
obey the equation for Fermi-Walker transport.
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6

Geodesic motion

!

Test particles follow the geodesic lines of given spacetime. In order to resolve
their motion one has to solve the geodesic equations. The constants of motion
are connected with corresponding Killing field and is equivalent to statment
that if metric does not depend on particular coordinate explicitely then there
is an integral of motion, associated with that coordinate. Those concepts are
practised in this section, devoted to the geodesic motion [1, 2, 3, 9].

E1 Show that the Hamiltonian for free test particle taken as

H =
1

2
g
ij
pipj (6.1)

leads to the geodesic equation.

I Solution: The geodesic equation is derived from the Hamilton’s equa-
tions

dpk
d⌧

= � @H

@xk
,

dxk

d⌧
=

@H

@pk
. (6.2)

Substituting for the Hamiltonian H we get

dpk
d⌧

= �1

2

@g
ij

@xk
pipj . (6.3)

At the same time, however, it holds

dpk
d⌧

=
d

d⌧
(gksp

s) =
dps

d⌧
gks + p

s@gks

@xi
p
i
. (6.4)
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Here we used the second Hamilton’s equation, which in our case leads to

dxk

d⌧
=

1

2
g
ij @pi

@pk
pj +

1

2
g
ij
pi
@pj

@pk
= g

kj
pj = p

k
. (6.5)

Combining equations (6.3) and (6.4) we obtain

gks
dps

d⌧
= �1

2

@g
ij

@xk
pipj �

@gks

@xi
p
i
p
s

=
1

2
g
il
g
sj @gls

@xk
pipj �

@gks

@xi
p
i
p
s
. (6.6)

At this point it is necessary to recall the following identity:

@

@xk

�
g
ij
gjs
�
=

@�
i
s

@xk
= 0) @g

il

@xk
= �gijgsl @gjs

@xk
. (6.7)

The equation (6.6) leads us to

gks
dps

d⌧
=

1

2
gls,kp

l
p
s � 1

2
gks,ip

i
p
s � 1

2
gks,ip

i
p
s

= |i ! l| = 1

2
gls,kp

l
p
s � 1

2
gks,lp

l
p
s � 1

2
gks,lp

l
p
s

= |in 3rd term l ! s| = 1

2
gls,kp

l
p
s � 1

2
gks,lp

l
p
s � 1

2
gkl,sp

s
p
l

=
1

2
(gls,k � gks,l � gkl,s) p

l
p
s
. (6.8)

At the end, we clearly obtain

dpi

d⌧
+

1

2
g
ik (�gls,k + gks,l + gkl,s) p

l
p
s = 0! dpi

d⌧
+ �i

lsp
l
p
s = 0. (6.9)

E2 Determine geodesic equations for a test particle on 2-sphere with the line
element

ds2 = d✓2 + sin2 ✓d'2
. (6.10)

I Solution: We will use the result of the previous exercise and find the
equations of motion from Hamilton’s equations. Hamiltonian of a free
test particle on a 2-sphere is given as

H =
1

2
g
ij
pipj =

1

2
(p✓)

2 +
1

2 sin2 ✓
(p')

2
. (6.11)
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The Hamilton’s equations read

dp✓
d⌧

= �@H

@✓
=

cot ✓

sin2 ✓
(p')

2 = cot ✓ sin2 ✓(p')2. (6.12)

At the same time, it holds p✓ = p
✓ and, hence, we obtain the ✓-component

of the geodesic equation in the form

dp✓

d⌧
= cot ✓ sin2 ✓(p')2. (6.13)

For the '-component of momentum we have

dp'
d⌧

= �@H

@'
= 0) p' = const ⌘ K = sin2 ✓p'. (6.14)

The resulting equation is thus

p
' =

1

sin2 ✓
K. (6.15)

E3 Vacuum, static and spherically symmetric solution of the Einstein’s equa-
tions is given by Schwarzschild metric which in Schwarzschild coordinates
reads

ds2 = �
✓
1� 2GM

c2r

◆
dt2 +

✓
1� 2GM

c2r

◆�1

dr2 + r
2d✓2 + r

2 sin2 ✓d'2
.

(6.16)
Find integrals of motion and in Newtonian limit determine their physical
meaning.

I Solution: The Hamiltonian of a free test particle in the spacetime with
metric gµ⌫ is given as

H =
1

2
g
µ⌫
pµp⌫ . (6.17)

It follows from Hamilton’s equations

dp↵
d⌧

= � @H

@x↵
(6.18)

for pt and p' that
dpt
d⌧

= 0 and
dp'
d⌧

= 0, (6.19)
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since the Hamiltonian H does not explicitly depends on t and '. Thus,
we have found two integrals of motion, namely

pt = K1 a p' = K2. (6.20)

In the limit r !1, Schwarzschild spacetime becomes Minkowski space-
time (we say, that Schwarzschild spacetime is asymptotically flat). The
components of 4-momentum has the following interpretation:

p
↵ = m

dx↵

d⌧
= m�

dx↵

dt
(6.21)

where � = 1/
p

1� V 2/c2 a V
2 = [V r]2 + [V ✓]2 + [V ']2. From this we

obtain
p
t = m�c

dt

dt
= �mc = E/c, (6.22)

and hence
K1 = pt = �pt = �E/c. (6.23)

For the second integral of motion it clearly holds:

p
' = �m

d'

dt
= �m

r
2

r2

d'

dt
= �

L

r2
. (6.24)

If V ⌧ c we have � ⇡ 1 and so

K2 = p' = r
2
p
' = L. (6.25)

E4 Show that motion in central plane of Schwarzschild spacetime is stable
agains latitudal perturbations.

I Solution: The equation of motion for the latitudal coordinate is given as

dp✓

d⌧
=

cos ✓

r4 sin3 ✓
L
2 � 2

r
p
r
p
✓
. (6.26)

Without the loss of generality we can assume that the motion takes place
in the plane ✓ = ⇡/2 a r = r0 = const. Let us further assume a small
perturbation �✓. Let us seek the solution of the equation (6.26) in the
form ✓ = ⇡/2 + �✓. We obtain, to the first order in �✓

�̈✓ = �L
2

r
4
0

�✓, (6.27)
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where we used the identities

cos(⇡/2 + �✓) = cos(⇡/2)� sin(⇡/2)�✓ + ... ⇡ ��✓. (6.28)

and

sin(⇡/2 + �✓) = sin(⇡/2) + cos(⇡/2)�✓ � 1

2
sin(⇡/2)�✓2 + ... ⇡ 1. (6.29)

The solution of the equation (6.27) is harmonic oscillations, i.e.

�✓ ⇠ sin ⌧. (6.30)

It follows that the of motion in the central plane is stable against latitudal
perturbations.

E5 Using Hamilton-Jacobi equations determine the equations of motion of a
test particle in Schwarzschild spacetime.

I Solution: Hamilton-Jacobi (HJ) equations for the S field reads

�@S

@�
=

1

2
g
↵� @S

@x↵

@S

@x�
, (6.31)

where
p↵ ⌘

@S

@x↵
. (6.32)

Taking into account the normalization condition of 4-momentum g
↵�

p↵p� =
�m2 we obtain a relation

@S

@�
=

1

2
m

2
. (6.33)

In Schwarzschild spacetime the HJ equations are given as

�@S

@�
= �1

2
f(r)�1

✓
@S

@t

◆2

+
f(r)

2

✓
@S

@r

◆2

+
1

2r2

✓
@S

@✓

◆2

+
1

2r2 sin2 ✓

✓
@S

@'

◆2

.

(6.34)
Let us look for the solution in separable form

S = S� + St + Sr + S✓ + S'. (6.35)

In previous exercises we determined two constants of motion, namely
pt = �E and p' = L. Hence, from equations (6.32) and (6.33) we get

pt =
@S

@t
=

@St

@t
! St = �Et, (6.36)

p' =
@S

@'
=

@S'

@'
! S' = L', (6.37)

1

2
m

2 =
@S

@�
=

@S�

@�
! S� =

1

2
m

2
�. (6.38)
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Using these, the solution (6.35) can be rewritten as

S =
1

2
m

2
�� Et+ L'+ Sr + S✓. (6.39)

We plug this solution back into (6.34) to obtain

�1

2
m

2 = �1

2
f(r)�1

E
2 +

1

2
f(r)

✓
@Sr

@r

◆2

+
1

2r2

✓
@S✓

@✓

◆2

+
1

2r2 sin2 ✓
L
2
.

(6.40)
After a simple algebra and separation of r-dependent and ✓-dependent
parts we obtain

r
2

f(r)
E

2�f(r)r2
✓
@Sr

@r

◆2

�m2
r
2 =

✓
@S✓

@✓

◆
+

L
2

sin2 ✓
= K = const. (6.41)

Substituting the expressions for pr = @Sr/@r and p✓ = @S✓/@✓ we obtain
two equations:

(pr)2 = E
2 � f(r)

✓
m

2 +
K

r2

◆
, (6.42)

⇣
p
✓
⌘2

=
1

r4

✓
K � L

2

sin2 ✓

◆
. (6.43)

If we consider the motion in equatorial plane ✓ = ⇡/2, p
✓ = 0 we have

for a latitudal component of 4-momentum

0 = K � L
2
. (6.44)

This motivates to introduce a new constant of motion, namelyQ = K�L2

for which it holds Q = 0 in equatorial plane. Rewriting (6.42) and (6.43)
with this constant of motion in mind we obtain

(pr)2 = E
2 � f(r)

✓
m

2 +
L
2 +Q

r2

◆
, (6.45)

⇣
p
✓
⌘2

=
1

r4

✓
Q+ L

2 � L
2

sin2 ✓

◆
. (6.46)

The remaining equations for time and azimuthal coordinates are clearly

p
t = � pt

f(r)
=

E

f(r)
, (6.47)

p
' =

1

r2 sin2 ✓
p' =

L

r2 sin2 ✓
. (6.48)
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E6 Using the Lagrange formalism discuss the motion of a test particle and
photons in equatorial plane of (outer) Schwarzschild spacetime, determine
the conditions for the existence of circular orbits and investigate their
stability via the e↵ective potential Ve↵(r;L).

I Solution: Let us start from the equation of motion for the radial com-
ponent of 4-velocity of a test particle.

[ur]2 = E
2 � Ve↵(r;L). (6.49)

Di↵erentiating it with respect to a�ne parameter ⌧ we obtain

dur

d⌧
= �1

2

dVe↵

dr
. (6.50)

On circular orbit it clearly holds ur = 0 and dur/d⌧ = 0. Putting the
second condition into (6.50) we obtain a formula for determining circular
orbit from the e↵ective potential as

dVe↵

dr
= 0. (6.51)

The stability of circular orbit r0 can be investigated via considering a
small perturbation �r. In other words we take r = r0 + �r. Plugging this
into equation (6.50) we get

�̈r = �1

2

dVe↵

dr
= |Taylor series|

= �1

2

dVe↵

dr
|r0 �

1

2

d2Ve↵

dr2
|r0�r + ...

⇡ �1

2

d2Ve↵

dr2
|r0�r. (6.52)

If
d2Ve↵

dr2
|r0 > 0 (local minimum), (6.53)

we see that �r undergoes harmonic oscillation. Thus, the perturbation �r
is bounded, which implies stability of the corresponding circular orbit.

On the other hand, if

d2Ve↵

dr2
|r0 < 0 (local maximum), (6.54)

we obtain an exponential growth of the perturbation �r, which implies
instability of the circular orbit.
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E7 Determine the angle of deflection of a light ray in Schwarzschild space-
time. Assume that the motion of the ray is confined to the equato-
rial plane (✓ = ⇡/2) and that the minimal distance from the center is
rmin � 2.

I Solution: From the normalization condition of null equatorial geodesics
in Schwatzschild spacetime:

0 = �
✓
1� 2

r

◆
[ut]2 +

✓
1� 2

r

◆�1

[ur]2 + r
2[u']2, (6.55)

we learn that the equation for radial component of a 4-velocity has a form

[ur]2 =


1�

✓
1� 2

r

◆
b
2

r2

�
u
2
t , (6.56)

where b = �u'/ut = L/E is the so-called impact parameter. The equa-
tion for azimuthal component of 4-velocity is simply

u
' =

b

r2
ut. (6.57)

Introducing the reciprocal coordinate u = 1/r and combining equations
(6.56) and (6.57) we otain the following:

✓
du

d'

◆2

=
1

b2
� (1� 2u)u2. (6.58)

Di↵erentiating this equation with respect to ' we get

u
00 = �u+ 3u2, (6.59)

where we denoted 0 ⌘ d/d'.

For null geodesics in Minkowski spacetime it holds that

u
00
0 = �u0, (6.60)

solution of which we take in the form

u0 = A sin'+B cos'. (6.61)

From the initial conditions we determine constants A and B. The first
detivative of u0 is:

(u00)
2 = (A cos'�B sin')2 =

1

b2
� u

2
0. (6.62)
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For u0 = 0 (foton at infinity) and '0 = 0 we, therefore, get A = 1/b and
from equation (6.61) we obtain B = 0. Thus, the solution in asymptoti-
cally flat infinity (r !1) is given as

u0 =
1

b
sin'. (6.63)

Let us consider the solution of the equation (6.59) for finite distance in
the form

u = u0 + u1, (6.64)

where u1 ⌧ 1. To the first order in u1 we obtain the equation

u
00
1 = �u1 +

3

b2
sin2 '. (6.65)

Instead of solving this, we transform the above into an equivalent form

u
00
1 + u1 = +

3

2b2
(1� cos 2'). (6.66)

Its particular solution can be ascertained in the form

u1 =
3

2b2
� 3k

2b2
cos 2'. (6.67)

Plugging this into (6.66) give us the following condition

k = �1

3
. (6.68)

The result is thus

u =
1

b
sin'+

3

2b2
+

1

2b2
cos 2'. (6.69)

The angle of deflection is defined via:

� = |'1(u! 0)� '2(u! 0)|� ⇡. (6.70)

Let
'1 = ⇡ + ✏1 (6.71)

and
'2 = ✏2. (6.72)
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Substituting into (6.69) we obtain the equation

0 ' �1

b
✏1 +

3

2b2
+

1

2b2
, (6.73)

0 ' 1

b
✏2 +

3

2b2
+

1

2b2
, (6.74)

from which we learn for ✏1 and ✏2 the following:

✏1 '
2

b
, ✏2 ' �

2

b
. (6.75)

The angle of deflection is thus

� = |✏1 � ✏2| '
4

b
. (6.76)

E8 Determine the relationship for the magnitude of precesion of the pericen-
ter for a test particle moving in the Schwarzschild spacetime.

I Solution: As it was show previously, in a spherically symmetric and
static spacetime the motion of a test particle takes place in central plane.
Without the loss of generality we can orient our coordinate system in
such a way that the corresponding central plane is the equatorial plane,
i.e. ✓ = ⇡/2.

First, let us derive the relativistic version of the Binet’s formula. In
the equatorial plane the relationship for the radial component of the 4-
velocity U r is given as

[U r]2 = E
2 �

✓
1� 2M

r

◆✓
1 +

L
2

r2

◆
, (6.77)

where M is a mass parameter of the Schwarzschild’s spacetime, E = �ut
is a covariant specific energy and L = u' is the specific angular moment
of of the test particle. Substituting r = 1/u we change (6.77) into the

✓
du

d⌧

◆2

= u
4
⇥
E

2 � (1� 2Mu)(1 + L
2
u
2)
⇤
, (6.78)

where ⌧ is the proper time measured along the geodesic of the test particle.
Together with the relation

✓
d'

d⌧

◆2

=
L
2

r4
= L

2
u
4 (6.79)
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we obtain di↵erential equation for u = u(') in the form

✓
du

d'

◆2

=
1

L2

⇥
E

2 � (1� 2Mu)(1 + L
2
u
2)
⇤
. (6.80)

Di↵erentiating this equation and after subsequent algebra we arrive at
the Binet’s formula:

d2u

d'2
+ u =

M

L2
+ 3Mu

2
. (6.81)

The first term on the right-hand side corresponds to the Newtonian term,
while the second term represents relativistic correction. In case of Mer-
cury, for example, the ration between the first and second term is

3Mu
2

M/L2
= 3L2

u
2 =

3L2

r2
⇠ 10�7

. (6.82)

To solve (6.81) we use perturbation method. Let us first introduce a
parameter

✏ =
3M2

L2
(6.83)

and we rewrite (6.81) into the form

d2u

d'2
+ u =

M

L2
+ ✏

✓
L
2

M
u
2

◆
. (6.84)

Further, let us consider an ansatz

u = u0 + ✏u1, (6.85)

where |u1| ⌧ 1 and u0 is the solution to the classical (non-relativistic)
Binet’s formula, which is a cone-section:

u0 =
M

L2
(1 + e cos'). (6.86)

Substituting (6.85) into (6.84) we obtain the equation

u
00
0 + ✏u

00
1 + u0 + ✏u1 =

M

L2
+ ✏

✓
L
2

M

◆
(u20 + 2u0u1✏+ ✏

2
u
2
1)

' M

L2
+ ✏

✓
L
2

M
u
2
0

◆
. (6.87)
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Since

u
00
0 + u0 =

M

L2
, (6.88)

we are left with

u
00
1 + u1 =

M

L2

✓
1 +

e
2

2

◆
+

2M

L2
e cos'+

Me
2

2L2
cos 2'. (6.89)

A particular solution of (6.89) can be find in the form

u1 = A+B' sin'+ C cos 2'. (6.90)

After substituting this into (6.89) we have

A+ 2B cos'� 3C cos 2' =
M

L2

✓
1 +

e
2

2

◆
+

2M

L2
e cos'+

Me
2

2L2
cos 2'.

(6.91)
From this, we learn the following relations between parameters A, B and
C:

A =
M

L2

✓
1 +

e
2

2

◆
, (6.92)

B =
Me

L2
, (6.93)

C = �Me
2

6L2
. (6.94)

Then, the solution u reads

u = u0 + ✏
M

L2

✓
1 +

e
2

2
+ e' sin'� e

2

6
cos 2'

◆
. (6.95)

The largest correction to u0 comes from ' sin', since it grows with in-
creasing '. If we neglect the remaining terms the solution can be written
as

u ' M

L2
[1 + e(cos'+ ✏' sin')] . (6.96)

Since it holds that

cos('� ✏') = cos' cos(✏')
⇠1

+ sin' sin(✏')
⇠✏'

' cos'+ ✏' sin', (6.97)
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we arrive at the final form

u ' M

L2
(1 + e cos['(1� ✏)]) . (6.98)

The phase di↵erence corresponding to one period is given as

'(1� ✏) = 2⇡ ) 'p =
2⇡

1� ✏
' 2⇡(1 + ✏). (6.99)

Thus, the angle determining the magnitude of the precession is given by

�' = 'p � 2⇡ ' 2⇡✏ =
6⇡M2

L2
. (6.100)

E9* The notion of circular orbits is very useful in understanding the dynam-
ics of particles in curved spacetimes. There are two key circular orbits
marginally stable rms, and photon rph orbits. Let V (r) is the e↵ective
potential of test particle in R-N spacetime and write it in the form

V (r) =

✓
1� 2M

r
+

Q
2

r2

◆✓
b+

L
2
z

r2

◆
(6.101)

where b = 1 for massive test particles and b = 0 for mass-less particles.
Using following conditions find out radii of those orbits as function of
electric charge parameter Q.

(A) The Marginally stable orbit is determined by the condition

dV

dr
= 0 and

d2V

dr2
= 0. (6.102)

(B) The Photon circular orbit satisfies condition

dV

dr
= 0 and

L
2

E2
=

r
2

1� 2M/r +Q2/r2
. (6.103)
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The region where even the light cannot escape from is called the event horizon
and is the boundary that defines the extension of the object we call the black
hole. The passage of time and tidal forces as experienced by an observer falling
down towards physical singularity are examined in this section [1, 9].

E1 Let us consider a test particle which radially falls from r = R on Schwarzschild
black hole. Determine the interval of the proper time �⌧ which it takes
the particle to arrive at singularity (r = 0) and the interval of the coordi-
nate time �t to arrive at the horizon (r = 2). The spacetime line element
has in the Schwarzschild’s coordinates the form

ds2 = �f(r)dt2 + 1

f(r)
dr2 + r

2d✓2 + r
2 sin2 ✓d'2

, (7.1)

where f(r) = 1� 2/r.

I Solution: Radially falling particle has the following components of 4-
velocity Uµ = dxµ/d⌧ :

U =
�
U

t
, U

r
, 0, 0

�
, (7.2)

where the 4-velocity is nomalized as

�1 = gµ⌫U
µ
U

⌫ ) (U r)2 = E
2 � (1� 2/r). (7.3)

Here, we have used the existence of the integral of motion Ut = �E which
is interpreted as covariant specific energy measured by static observers at
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infinity. The particle at r = R is released at rest which means that the
corresponding value of E2 is

E
2 = 1� 2/R. (7.4)

For the interval of proper time of a falling particle we hence obtain the
equation

�⌧ = �
Z 0

R

drp
2/r � 2/R

, (7.5)

where the sign ‘�’ means that the particle falls towards the black hole.
The integral (7.5) is solved as follows:

�⌧ =

r
R

2

Z R

0

s
r/R

1� r/R
= |r/R = cos2 ⌘, dr = �2R cos ⌘ sin ⌘d⌘|

=
2p
2
R

3/2
Z ⇡/2

0
cos2 ⌘d⌘ = | cos2 ⌘ = (1 + cos 2⌘)/2|

=
2p
2
R

3/2
Z ⇡/2

0

✓
1

2
+

1

2
cos 2⌘

◆
d⌘ =

✓
R

2

◆3/2

⇡. (7.6)

To determine the coordinate time �t corresponding to the proper time
of a static observer at infinity we use the equation (7.3) and the relation
U

t = g
tt
Ut. We obtain

U
r

U t
=

dr

dt
= �

(1� 2/r)
p
E2 � (1� 2/r)

E
. (7.7)

This di↵erential equation can be solved simply by integration:

�t = �
Z 2

R

E dr

(1� 2/r)
p
E2 � (1� 2/r)

= �
Z 2

R

p
1� 2/R dr

(1� 2/r)
p
2/r � 2/R

. (7.8)

In analogy to the previous case we use the substitution

r/R = cos2 ⌘ (7.9)
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with which (7.8) turns into

�t =

r
2(1� 2/R)

R

Z ⌘0

0

cos4 ⌘

sin2 ⌘ � 2/R
d⌘

=

r
2(1� 2/R)

R
⇥

2

4(4 +R)⌘

2R
+

2
p
2 arctanh

⇣p
2tg ⌘p
R�2

⌘

R
p
R� 2

+
1

2
cos ⌘ sin ⌘

3

5
arccos

p
2/R

0

.(7.10)

The dominant term is arctanh(x) as its argument for the upper limit
⌘ = arccos

p
2/R corresponds to x = 1 for which the function arctanh

diverges. Thus means that from the point of view of a coordinate observer
(a static observer at infinity) the test particle never reaches the horizon
of the black hole, while from the point of view of the particle itself the
singularity (and thus the horizon as well) is reached in a finite time.

E2 Determine the components of tidal acceleration experienced by radially
in-falling observer in Schwarzschild black hole spacetime.

I Solution: We start with the equation of geodesic deviation which has
the form

D2
l
a

d⌧2
= �Ra

bcdU
b
l
c
U

d
, (7.11)

where R is a Riemann tensor, U is the 4-velocity of the in-falling observer
and l is the so-called separation vector. We want to find components of
tital acceleration �a = D2l/d⌧2 felt by the unlucky observer which is
falling towards the black hole. Hence, we transform the equation (7.11)
into an orthonormal system attached to the freely falling observer, i.e.

D2
l
â

d⌧2
= �Râ

b̂ĉd̂
U

b̂
l
ĉ
U

d̂
. (7.12)

In this system, the separation vector has the zero component l0̂ = 0 and
the remaining components are l

1̂ = �r, l2̂ = �✓ a l
3̂ = �'. The zero

components of the 4-velocity is obviously U 0̂ = 1 and the remaining com-
ponents are zero. The transformation from (7.11) to (7.12) can be made
in two steps: first, we switch from coordinate base to the orthonormal
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base of a static observer

et̂ = (1� 2/r)�1/2et, (7.13)

er̂ = (1� 2/r)1/2er, (7.14)

e✓̂ = r
�1e✓, (7.15)

e'̂ = (r sin ✓)�1e' (7.16)

and subsequently by Lorentz transformation (a.k.a. ‘boost’) in the radial
direction we change the basis to the orthonormal basis of a freely falling
observer

e0̂ = U = �et̂ � �ver̂, (7.17)

e1̂ = ��vet̂ + �er̂, (7.18)

e2̂ = e✓̂, (7.19)

e3̂ = e'̂. (7.20)

The components of a Riemann tensor in static orthonormal frame can
be ascertained, for instance, using the Cartan formalism (see chapter 3,
Ex2, where we put e2↵(r) = e�2�(r) = 1� 2/r). Hence:

R
t̂
r̂t̂r̂

=
2

r3
, R

t̂
✓̂t̂✓̂

= R
t̂
'̂t̂'̂

= � 1

r3
,

R
r̂
✓̂r̂✓̂

= R
r̂
'̂r̂'̂ = � 1

r3
, R

✓̂
'̂✓̂'̂

=
2

r3
. (7.21)

Contracting these components with the orthonormal tetrad (7.17)–(7.20)
gives us their expression in the coordinate frame of a freely falling ob-
server:

R
â
b̂ĉd̂

= e
â
↵̂e

�̂

b̂
e
�̂
ĉ e

�̂
d̂
R

↵̂
�̂�̂�̂

, (7.22)

where greek indices denote components in static orthonormal tetrad. A
specific feature of Schwarzschild geometry is that they are invariant with
respect to Lorentz transformation in radial direction, which can be easily
checked. For instance, the component

R
0̂
1̂0̂1̂

= ⌘
00
R0̂1̂0̂1̂ = �R0̂1̂0̂1̂ = �e

↵̂
0̂
e
�̂
1̂
e
�̂
0̂
e
�̂
1̂
R↵̂�̂�̂�̂ =

�
⇥
�
4
Rt̂r̂t̂r̂ + (��v)4Rr̂t̂r̂t̂ + �

2(��v)2Rt̂r̂r̂t̂ + �
2(��v)2Rr̂t̂t̂r̂

⇤
=

��4(1� v
2)2Rt̂r̂t̂r̂ = R

t̂
r̂t̂r̂

. (7.23)
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Similarly
R

0̂
2̂0̂2̂

= R
t̂
✓̂t̂✓̂

, R
0̂
3̂0̂3̂

= R
t̂
'̂t̂'̂

, . . . (7.24)

The resulting components of the tidal acceleration as measured by freely
falling observer are

D
2
l
ĵ

d⌧2
= �Rĵ

0̂k̂0̂
l
k̂
, (7.25)

which gives us

D2
l
1̂

D⌧2
=

2

r3
�r, (7.26)

D2
l
2̂

D⌧2
= � 1

r3
�✓, (7.27)

D2
l
3̂

D⌧2
= � 1

r3
�'. (7.28)

Thus, we see that while in radial direction the acceleration is positive
(resulting in stretching of the observer), in remaining two directions it is
negative (resulting in contraction of the observer).

E3* Determine the magnitude and orientation of local electric and magnetic
field in the vicinity of Reissner-Nordstrøm black hole of the mass M and
charge Q as measured by the observer on a circular orbit with circumfer-
ence 2⇡r.

E4* Charged particles are radially in-falling into Reissner-Nordstrøm black
hole with parameters Q2

< M
2. Show that in this way it is impossi-

ble to turn the black hole into naked singularity, that is an object with
parameters Q2

> M
2.

E5* Consider an observer orbiting a Kerr black hole in equatorial plane on a
circular orbit r = const.

(a) Determine the allowed range for angular velocity ⌦ = d'/dt as mea-
sured stationary observers at infinity.

(b) If the orbit is located within the ergosphere, show that from the point
of view of observers at infinity, the orbiting observer cannot be at rest
and must orbit the black hole in the same direction as it spins.

(c) If the observer is between the horizons, show that the observer cannot
stay at the orbit r = const.
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E6* Consider the Sgr A⇤ black hole with mass MSgra⇤ = 4.02 ⇥ 106M� (al-
though this black hole rotates, consider it as a non-rotating one). Deter-
mine:

(a) the magnitude curvature tensor at its horizon,
(b) the proper time of experimental capsule that falls from the horizon
to Sgr A⇤’s physical singularity,

(a) the moment of capsule’s proper time ⌧ when the tidal forces are of
order of unity.

E7* Consider the star S2 on circular orbit with radius R2 = 7.9kpc around
Sgr A⇤ black hole with the velocity 7650km/s. The motion takes place
in the equatorial plane of Sgr A⇤. What would be the magnitude of spin
parameter a of corresponding Kerr spacetime?
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Cosmology

⇤2⇤1

⇤3

⇤4

Einstein’s field equations can be applied to the whole universe. The basic tool
of a cosmologist are Friedmann equations, desribing dynamics of the Universe
and Robertson-Walker metric responsible for description of the geometry of the
Universe. These concepts and more are practised in this section [3, 6, 7, 9].

E1 Find a transformation which turns Robertson-Walker (R-W) metric

ds2 = �dt2 +R
2(t)


dr2

1� kr2
+ r

2(d✓2 + sin2 ✓d'2)

�
(8.1)

into

ds2 = �dt2 +R
2(t)

⇥
d�2 + ⌃2

k(�)(d✓
2 + sin2 ✓d'2)

⇤
, (8.2)

where

⌃k(�) =

8
<

:

� for k = 0,
sin� for k = +1,
sinh� for k = �1.

(8.3)

I Solution: The corresponding transformation is clearly

r = ⌃k(�). (8.4)

For k = 0 we get dr = d� and so

ds2 = �dt2 +R
2(t)

⇥
d�2 + �

2(d✓2 + sin2 ✓d'2)
⇤
. (8.5)
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For k = +1 we have dr = cos�d�, which together with the identity
sin2 �+ cos2 � = 1 leads to the result

ds2 = �dt2 +R
2(t)

⇥
d�2 + sin2 �2(d✓2 + sin2 ✓d'2)

⇤
. (8.6)

For k = �1 we have dr = cosh�d�, which together with the identity
cosh2 �� sinh2 � = 1 leads to

ds2 = �dt2 +R
2(t)

⇥
d�2 + sinh2 �2(d✓2 + sin2 ✓d'2)

⇤
. (8.7)

E2 Derive the formula for cosmological red shift

1 + z =
R(t0)

R(t)
. (8.8)

I Solution: Let us consider a galaxy G with radial co-moving coordinate
� along which an emitted photon is moving. From the condition for the
worldline of an photon, i.e. ds2 = 0, we obtain

0 = �dt2 +R
2(t)d�2 ) � =

Z t2

t1

dt

R(t)
. (8.9)

After passage of period �t1, another photon is emiited, which reach the
observer in time t2 +�t2. Thus, we have the equation

� =

Z t2

t1

dt

R(t)
=

Z t2+�t2

t1+�t1

dt

R(t)
, (8.10)

which can be written as
Z t1+�t1

t1

dt

R(t)
+

Z t2

t1+�t1

dt

R(t)
=

Z t2

t1+�t1

dt

R(t)
+

Z t2+�t2

t2

dt

R(t)
. (8.11)

After subtracting same terms we get
Z t2+�t2

t2

dt

R(t)
=

Z t1+�t1

t1

dt

R(t)
. (8.12)

Since during the periods �ti the scale parameter is not changing notice-
ably we can say

R(t1) ' R(t1 +�t1) and R(t2) ' R(t2 +�t2). (8.13)
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After some algebra we obtain the result

R(t2)

R(t1)
=

�t2

�t1
=

f1

f2
. (8.14)

The red shift z is defined via relationship

1 + z = fsource/fobserver. (8.15)

In our case the index 1 corresponds to the source, while index 2 corre-
sponds to the observer. Thus

R(t2)

R(t1)
= 1 + z. (8.16)

E3 Determine the parameters of Einstein’s static universe and show that that
model is unstable.

I Solution: We start with Friedmann equations in the form

3
Ṙ

2 + k

R2
� ⇤ = 8⇡% (8.17)

2RR̈+ Ṙ
2 + k

R2
� ⇤ = �8⇡p. (8.18)

Simplifying the first, we get

Ṙ
2 =

8⇡

3
%R

2 +
⇤

3
R

2 � k. (8.19)

Substituting Ṙ2 into (8.18) we obtain

2RR̈ = �8⇡pR2 � 8⇡

3
%R

2 +
2

3
⇤R2

. (8.20)

In order for a universe to be static Ṙ = R̈ = 0 must holds. For simplicity,
let us represent the matter with which the Universe is filled as dust, which
is described by equation of state p = 0. Given this, from equations (8.19)
and (8.20) we obtain

k = ⇤R2 a % = %E =
⇤

4⇡
. (8.21)
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Since ⇤ > 0 (from condition % > 0), the geometry of static universe has
a positive curvature, i.e. k = 1. The radius of Einstein’s universe is thus

RE =
1p
⇤
. (8.22)

Now it is necessary to adress the question of stability of our solution
against small perturbation of density % and of scale parameter R. For
this purpose we define the following functions

R(t) =
1p
⇤

+ �R(t) and %(t) =
⇤

4⇡
+ �%(t), (8.23)

which we put into (8.20) and retain the terms only up to first order in
�R:

2�̈R
p
⇤ ' �8⇡

3
�%. (8.24)

The relationship between �% and �R for a dust follows from the condition
of adiabatic expansion

d(%R3) = 0 ) �% = �3 %E
RE

�R = � 3

4⇡
⇤3/2

�R. (8.25)

Thus, we get
�̈R = ⇤�R. (8.26)

Since ⇤ > 0, the solution of this equation is exponentially growing per-
turbation

�R ⇠ exp(t) ) instability. (8.27)

E4 Derive the equation for conservation of energy during adiabatic expansion
(compression) of the universe.

I Solution: The sought equation follows from divergencelessness of a energy-
momentum tensor of an ideal fluid. In other words, we have

uµr⌫T
µ⌫ = 0, (8.28)

T
µ⌫ = (p+ %)uµu⌫ + pg

µ⌫
. (8.29)
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Substituting (8.29) into (8.28) we obtain:

uµr⌫T
µ⌫ = uµr⌫ [(%+ p)uµu⌫ + pg

µ⌫ ]

= uµ [r⌫(%+ p)uµu⌫ + (%+ p)(r⌫u
µ)u⌫

+ (%+ p)uµr⌫u
⌫ + (r⌫p)g

µ⌫ ] . (8.30)

Let us now prove the following equality

uµr⌫u
µ = 0. (8.31)

Proof. Since uµuµ = �1„ it is clear that r⌫(uµuµ) = 0. This, in turn,
gives

r⌫(uµu
µ) = (r⌫uµ)u

µ + uµr⌫u
µ = (r⌫uµ)u

µ + u
µr⌫uµ

= 2(r⌫uµ)u
µ = 0. (8.32)

Given the normalization of 4-velocity it follows from the equation (8.30)
that

0 = �r⌫(p+ %)u⌫ � (%+ p)r⌫u
⌫ + u

⌫r⌫p

= �u⌫r⌫%� (%+ p)r⌫u
⌫
. (8.33)

It can be shown that the particle density n in the given fluid is conserved,
i.e.

r⌫(nu
⌫) = 0, (8.34)

which implies

r⌫(nu
⌫) = (r⌫n)u

⌫ + nr⌫u
⌫ ) r⌫u

⌫ = � 1

n
u
⌫r⌫n = � 1

n

dn

dt
.

(8.35)
Putting (8.35) into (8.33) we arrive at equation

�d%

dt
+

p+ %

n

dn

dt
= 0. (8.36)

The particle density is inversely proportional to a proper volume n ⇠ 1/V
and, hence, dn/n = �dV/V . After substituting this into (8.36) we get

d%

dt
+

%+ p

V

dV

dt
= 0. (8.37)
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Multiplying this equation by volume V we obtain after some algebra

d(%V )

dt
+ p

dV

dt
= 0. (8.38)

This equation remains us the first law of thermodynamics for adiabatic
process (as the right-hand side is zero). For the universe we speak of
adiabatic expansion or compression.

Let us now calculate the volume of a universe V in a given time t:

V =

Z q
(3)g d�d✓d' =

Z
R

3(t)⌃2
k(�) sin ✓d�d✓d' = 4⇡R3

Z
⌃2
k(�)d�.

(8.39)
From this result, it is clear that V ⇠ R

3. After putting this into (8.38)
we obtain the final form of the conservation law for the energy during
adiabatic expansion (compression) of the universe:

d

dt

�
%R

3
�
+ p

dR3

dt
= 0. (8.40)

E5 Show that in FLRW cosmology (⇤ > 0) all matter dominated universes
with big bang as t!1 asymptotically approach de Sitter universe and
as t! 0 they approach Einstein-de-Sitter universe.

I Solution: We can rewrite Friedmann’s equation into the form

Ṙ
2 =

C

R
� k +

⇤

3
R

2
, (8.41)

where C = const. From this equation it is clear that for big R (t ! 1)
we have

Ṙ ⇡
p
⇤/3R ! R(t) ⇠ exp(

p
⇤/3 t), (8.42)

which corresponds to de-Sitter universe (k = 0, % = 0, ⇤ > 0), whereas
for small R (t! 0) we get

Ṙ ⇡ C/

p
R ! R(t) ⇠ t

2/3
, (8.43)

which corresponds to Einstein-de-Sitter universe (k = 0, p = 0, ⇤ = 0).

E6 One of the physical interpretations of cosmological constant is through
the notion of scalar field, ', called the ”quitessence”. Assuming spatial
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homogenity (ri' = 0) of the field and R-W metric, the equations of
motion of the scalar field ' read

'̈+ 3H '̇+
dV

d'
= 0. (8.44)

where is V = V (') potential of the scalar field and H is the Hubble
parameter. Show that for su�ciently large value of H and for rµ ' <<

V (') we will obtain stress-energy tensor for a cosmological constant.

I Solution: The stress-energy tensor of scalar field reads

Tµ⌫ = rµ'r⌫ '+ gµ⌫

✓
1

2
g
↵�r↵'r�'� V (')

◆
. (8.45)

The homogenity requires the validity of the condition

ri' = 0 (8.46)

where i runs over spatial indexes. The non-zero components of stress-
energy tensot Tµ⌫ are

TTT =
1

2
'̇
2 + V ('), (8.47)

Tij = �gijV ('). (8.48)

The condition '̇ << V (') further simplifies the TT component of the
stress-energy tensor, which now reads

TTT ' V ('). (8.49)

Provided that potential V (') has an interval where it is almost constant
in field ' we find out that the cosmological constant stress-energy tensor
can be written in terms of scalar field '. Corresponding energ-density %⇤
and pressure p⇤ read

%⇤ ' V (') (8.50)

and
p⇤ ' �V ('). (8.51)

Recall that equation of state of cosmological constant reads p⇤ = �%⇤.
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E7* The de Sitter in the (t, x, y, z) coordinates reads

ds2 = �dt2 + exp 2H t
�
dx2 + dy2 + dz2

�
. (8.52)

In this spacetime, let’s assume non-comoving observer and solve the
geodesic equation for them. Find the a�ne parameter as function of
cosmic time t and show that the geodesic will reach t ! �1 in a finite
a�ne parameter. This example shows, that selected coordinates do not
cover the whole manifold.

E8* The non-relativistic particles have zero temperature T and zero pressure
p. This is a cosmological idealization, however in reality those particles
posses some temperature and pressure, due to their random motion. They
satisfy the equation

p ⇠ %T. (8.53)

(A) Find out what is the dependence of the gas of massive particles on
the scale parameter.

(B) Let’s consider neutrinos with mass m⌫ = 0.1eV, and a present epoch
temperature T⌫0 = 2K. Find out the redshift corresponding to the
moment when neutrinos become non-relativistic.

E9 Determine comoving particle horizon ��⇤ and physical particle horizon
d⇤ sizes at given epoch identified with scale factor value a⇤, assuming the
universe is filled with:

(A) dust (p = 0),
(B) radiation (p = %/3).

Compare those comoving horizons with comoving distance �AB separat-
ing a point A on CMBR from point B on Earth.

I Solution: Without loss of generality, assume that the photon fol-
lows radial null geodesics, described with line element

ds2 = �dt2 + a
2(t)d�2

. (8.54)

Clearly, the comoving distance �� is given by formula

�� =

Z t2

t1

dt

a(t)
=

Z a2

a1

da

ȧ a
( Why?) (8.55)
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The evolution of scale parameter a(t) with cosmic time t is determined
by the fluid properties. For presureless dust the equation of state reads

p = 0. (8.56)

Let’s recall that the conservation law of the energy reads

d
�
%a

3
�
+ pda3 = 0. (8.57)

In the case of dust filled universe the last equation simplifies to one that
reads

d
�
%a

3
�
= 0 ) %(t) a3(t) = const. (8.58)

Normalizing the scale factor at present epoch to a0 = 1 the Friedman
equation will now read

H
2 =

8⇡G

3

%0

a3
=

H
2
0

a3
) ȧ = H0 a

�1/2
. (8.59)

Using last equation in (8.55) we obtain formula for comoving distance of
radiation in case of dust filled universe in the form

�� =

Z a2

a1

da

H0a
1/2

=
2

H0

⇣
a
1/2
2 � a

1/2
1

⌘
. (8.60)

The comoving particle horizon distance at epoch t⇤ is the distance that a
photon travels from the Big Bang to the epoch with corresponding scale
parameter a⇤, i.e.

��⇤ =
2

H0
a
1/2
⇤ . (8.61)

Corresponding physical particle horizon distance reads

�d⇤ = a⇤��⇤ =
2

H⇤
. (8.62)

In the case of radiation the equation of state reads

p =
1

3
% (8.63)

and the conservation law (8.57) will give equation

d%

%
= �4da

a
) %(t)a4(t) = const. (8.64)
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Following similar procedure as in case of dust filled universe we will arrive
to formulas for particle horizon distances in the form

��⇤ =
a⇤
H0

, (8.65)

d⇤ = a⇤��⇤ =
a
2
⇤

H0
=

1

H⇤
. (8.66)

Looking back at CMBR we observe the Universe when its scale factor
was aCMBR ⇠ 1/1300. The comoving distance between a point A at last
scattering surface and point B on Earth now is in case of dust filled
universe

�AB =
2

H0

⇣
1� a

1/2
CMBR

⌘
⇠ 2

H0
. (8.67)

The particle horizon distance for point A is

��⇤(A) =
2

H0
a
1/2
CMBR. (8.68)

Causally connected region around point A is much smaller then the co-
moving distance between A and B. Problem is that CMBR is highly
isotropic even for causally disconnected regions. We call this ”horizon
problem” of standard model.

E10 Explain the nature of ”Flatness problem” and show how inflation theory
resolves this problem

I Solution: Let us start with Friedman equation

Ḣ
2 =

8⇡G

3
(%M + %�)�

k

a2
. (8.69)

Using dimensionless density parameters

⌦i =
%i

%c
, (8.70)

where is %c critical density for spatially flat universe, i.e.

%c =
3H2

8⇡G
, (8.71)

we rewrite Friedman equation to read

1 = ⌦m + ⌦� + ⌦K , (8.72)
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where we defined

⌦K = � k

H2a2
= � k

ȧ2
. (8.73)

From CMBR observations it follows that ⌦K = 0 best fits the data. ⌦K

is clearly time dependent parameter. In the regime of dust domination ,
i.e. from the epoch when Universe has cooled to 104K, to present epoch
the scale parameter evolved with time according to relation a(t) ⇠ t

2/3

and therefore the ⌦K parameter scales as ⌦K ⇠ T
�1 (clearly, we have

⌦K ⇠ ȧ
�2 ⇠ t

2/3). Since there is a ⇠ T
�1 then also ⌦K ⇠ T

�1. From the
observations we can safely consider that |⌦K | < 1. In order to satisfy this
condition at the epoch when cosmic soup was 104K hot then |⌦K | < 10�4.
When temperature of the cosmic content increases above 104K then its
evolution is driven by radiation domination regime, there a ⇠ t

1/2. In
this case the curvature parameter scales as ⌦K(t) ⇠ a

2(t) ⇠ T
�2. If

⌦K be 10�4 at the radiation dominated epoch at temperature T ⇠ 1010K
(electron-positron anihilation era) then there is |⌦K | < 10�16 (Why?). In
order to obtain present curvature parameter |⌦K | < 1 it must be finely
tuned to zero at early stages of the Universe evolution.

Inflation theory introduces a new phase taking place just Plank time after
Big Bang and that last just 10�35s, but during that stage it undergoes
rapid expansion due to inflantion field with equation of state p = �% =
const. This is the period where Hubble parameter H, remains constant.
The Friedman equation reads

H
2 =

8⇡G

3
%vac (8.74)

and therefore scale parameter evolves exponentially, i.e.

a(t) = aP l exp

"r
8⇡G

3
%vac(t� tP l)

#
. (8.75)

The Friedman equations, including curvature term, during inflation pe-
riod reads

H
2 =

8⇡G

3
%vac �

k

a2
. (8.76)

Since %vac and H are constant then su�ciently large inflation will render
⌦k su�ciently small so we can now observer its value almost zero, for any
initial curvature.
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E11 Let p and % are comoving pressure and energy density of the perfect fluid
filling up the model of the Universe. Show that equation of state

p = �% (8.77)

implies that % = %0 = const.

I Solution: The energy-momentum conservation equation in the case
of expanding universe reads

d
�
% a

3
�
+ pda3 = 0. (8.78)

Using equation of state (8.77) then leads to equation (show)

a
3d% = 0 (8.79)

which implies result (since scale factor is clearly non zero)

d% = 0 ) % = %0 = const. (8.80)

E12 Assume the initial inflation phase of evolution of the Universe and let the
inflation field be cosmological constant ⇤ = 8⇡%vac > 0 with correspond-
ing equation of state p = �%. Determine the temporal evolution of the
scale factor a during this phase of the Universe evolution.

I Solution: The Friedman equation reads

H
2 =

8⇡G

3
%vac �

k

a2
. (8.81)

As shown in the previous example %vac = const., then the temporal evo-
lution of a(t) is simply encoded in the integral

t =

Z ✓
8⇡G %vac

3
a
2 � k

◆�1/2

da. (8.82)

For three di↵erent curvature parameters k = �1, 0, 1 we obtain result

a(t) ⇠

8
<

:

cosh�1(H t) for k = �1,
exp(H t) for k = 0,

sinh�1(H, t) for k = +1.
(8.83)

Here parameter H =
p
8⇡G %vac/3. This is identical to Hubble parame-

ter only in case of k = 0. It is worth to note, that in both cases k = ±1
the expansion approaches exponential expansion of case k = 0. It means,
that for large enough inflation phase the expansion parameter will grow
the same regardless initial curvature parameter k.
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Einstein’s Equations

Finally, a section devoted to the Einstein’s field equations themselves. The
field equations tell how the energy-mass distribution generates curved geom-
etry of the world and how the geometry influences the energy-mass distribu-
tion. In this section we will practise the derivation of Einstein’s equations
[3, 6, 7, 9].

E1 Show that the vacuum Einstein’s field equations follow from the Einstein-
Hilbert action

S =

Z p
�gR d4x (9.1)

where R is Ricci scalar and g is the determinat of the metric gµ⌫ (hint:
use identity �

p
�g = �1

2

p
�ggµ⌫�gµ⌫).

I Solution: The Einstein’s field equations come from the variational prin-
ciple of least action which states

�S = 0 , (9.2)

where the operator � is a variation. Applying it to (9.1) one obtains

�S =

Z
�
�p
�gR

�
=

Z �
R�
p
�g + �R

p
�g
�
d4x

=

Z �
R�
p
�g +

p
�gRµ⌫�g

µ⌫ +
p
�ggµ⌫�Rµ⌫

�
d4x. (9.3)

The variation of the Ricci tensor is known to be of the formZ p
�ggµ⌫�Rµ⌫d

4
x =

Z p
�grµV

µd4x, (9.4)

– 55 –



Problem set for relativistic physics and astrophysics

for certain V µ. Notice, however, that the quantity
p
�grµV

µ represents
a total derivative of V µ and, therefore, from Gauss theorem, one finds
out that Z

⌦

p
�grµV

µd4x =

Z

@⌦
dV µ = 0. (9.5)

Equation (9.3) now reads

�S =

Z �
R�
p
�g +

p
�gRµ⌫�g

µ⌫
�
d4x

=

Z p
�g
✓
Rµ⌫ �

1

2
gµ⌫R

◆
�g

µ⌫d4x = 0. (9.6)

In the last step, the hint was used. The last equation must hold for any
�g

µ⌫ and therefore we obtain the desired result

Rµ⌫ �
1

2
gµ⌫R = 0. (9.7)

E2 Derive Einstein’s field equations via Palatini variation. In other words,
assume no a-priori relationship between the a�ne connection �%

µ⌫ and the
metric gµ⌫ and use the action principle independently for both.

I Solution: Variation of the Einstein-Hilbert action with respect to the
(inverse) metric reads

�S

�gµ⌫
= 0 )

�
�p
�gg↵�

�

�gµ⌫
R↵� =

p
�g
⇣
R

µ⌫ � 1

2
gµ⌫R

⌘
= 0 . (9.8)

These would be Einstein’s equations if the connections inside Rµ⌫ and R
were the same as Christo↵el symbols. That is indeed obtained once we
vary the action with respect to the connection, which yields

�S

��%
µ⌫

= 0 ) @%g
µ⌫ = �µ

%�g
�⌫ + �⌫

%�g
µ�

. (9.9)

This is nothing but the metric compatibility condition r%g
µ⌫ = 0.
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Misc problems

Here, various problems of relativistic physics for gaining deeper insight into
relativistic physics are presented [4, 8, 5].

E1 Consider the motion of a neutral test particle in the Reissner-Nordström
(R-N) metric field. Its spacetime interval reads

ds2 = �f(r)dt2 + f(r)�1dr2 + r
2
�
d✓2 + sin2 ✓d'2

�
(10.1)

where

f(r) = 1� 2M

r
+

Q
2

r2
(10.2)

with Q being an electric charge of the R-N spacetime. Show that there
exists a radius r = rmin where a neutral test particle can remain still (the
boundary of the repulsive region).

I Solution: Let us assume motion in the equatorial plane. Then radial
component of the geodesic equation reads

⇣dr
d⌧

⌘2
= E

2 �
⇣
1� 2M

r
+

Q
2

r2

⌘⇣
1 +

L
2

r2

⌘
. (10.3)

Consider a particle with zero angular momentum L = 0.

Ve↵ ���!
L=0

1� 2M

r
+

Q
2

r2
= f(r) . (10.4)
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If there is a stable boundary r = rmin between the repulsive and attractive
character of the geometry, then there the following conditions must be
fulfilled: dVe↵/dr

��
rmin

= 0 and d2Ve↵/dr2
��
rmin

> 0.

Let us do the calculations:

df(r)

dr

���
rmin

=
2M

r
2
min

� 2Q2

r
3
min

= 0 ) rmin =
Q

2

M
. (10.5)

+
d2f(r)

dr2

���
rmin

= � 4M

r
3
min

+
6Q2

r
4
min

=
2M3

Q6
> 0 . (10.6)

E2 In the field of R-N naked singularity, there are two test particles sent
toward its center. Both particles have covariant energy E = 1, angular
momentum L = 0 and rest mass m. The particles are sent with a given
mutual time-delay. After the first particle reaches the turning point, it
turns back and collides with the incoming second particle at some r.
Determine the energy of the collision. Determine the location of the
collision with has maximal energy.

I Solution: The R-N geometry is given by the equation (10.1). The radial
component of particle’s 4-velocity reads

U
t = g

tt
Ut = �

Ut

f
=

E

f
=

1

f
, (10.7)

⇣
U

r
⌘2

= E
2 � Veff = E

2 � f = 1� f ) U
r = ±

p
1� f .

(10.8)

In the moment of the collision, the 4-velocities of ingoing and outgoing
particles are given by formulae

U1 = (1/f ,

p
1� f , 0 , 0) , U2 = (1/f ,�

p
1� f , 0 , 0) . (10.9)

The energy of collision reads

E
2
CM = �(P1 + P2)

2 = m
2
1 +m

2
2 � 2gµ⌫P

µ
P

⌫ = 2m2 � 2m2
gµ⌫U

µ
U

⌫ =

= 2m2
h
1�

⇣
� f

f2
� 1

f
+ 1
⌘i

=
4m2

f
. (10.10)
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The maximal energy of the collision E2
CM,max will be reached at the min-

ima of the function f(r), i.e. at the point rmin = Q
2
/M . The formula for

maximal energy of the collision then reads

E
2
CM,max =

4m2

1� M2

Q2

. (10.11)

E3 Find out the amount of local acceleration, necessary to keep the test
particle at rest at a given radius r. Determine the magnitude of this
acceleration at the event horizon.

I Solution: Consider spherically symmetric spacetime with spacetime in-
terval

ds2 = �f(r)dt2 + f
�1(r)dr2 + r

2d✓2 + r
2 sin2 ✓d'2

. (10.12)

The 4-acceleration of particle having 4-velocity u↵ is given by the equation

a
↵ ⌘ du↵

d⌧
= u

↵
;�u

� = u
↵
,�u

� + �↵
��u

�
u
�
. (10.13)

The components of stationary particle 4-velocity are u
µ = (ut, 0, 0, 0).

The normalization condition implies ut = 1/
p
�f(r). Thus, we have

a
↵ = �↵

tt(u
t)2 = ��↵

tt
1

f(r)
. (10.14)

Clearly, �t
tt = �✓

tt = �'
tt = 0 and

�r
tt =

1

2
g
rr
⇣
�gtt, r

⌘
=

1

2
ff

0
. (10.15)

The only non-zero component of 4-acceleration is the radial one, i.e. ar =
�f 0

/2. The magnitude of the 4-acceleration thus reads

a(r) =
q
g↵�a

↵a� =
p
grr(ar)2 =

f
0

2
p
f
. (10.16)

Since f = 0 at the event horizon we get the expected result a(rhor) =1.

E4 Consider a test particle which is lowered by a distant observer (usually at
infinity) toward the radius r using infinitely long, massless string. What
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is the magnitude of a1(r), of the observer’s action on test particle? What
is the magnitude of a1(rhor)?

I Solution: Consider following mind-experiment. Observer at infinity low-
ers the string by a small proper length �s. Doing so, he performs work

�W1 = a1�s . (10.17)

At radius r, the particle moves by proper distance �s, but performed work
is

�W = a(r)�s . (10.18)

Now, let the work �W be turned to radiation, which is collected at infinity.
Energy of this radiation su↵ers from gravitational redshift

�E1 = f
1/2

�! = f
1/2

a�s . (10.19)

The energy conservation implies �E1 = �W1 and thus

f
1/2

a�s = a1�s , ) a1 = f
1/2

a . (10.20)

Inserting into this the expression for a from Eq. (10.16) we will get

a1 =
1

2
f
0
. (10.21)

The magnitude of the acceleration a1(rhor) is finite at the event horizon.

E5 The Lagrange density of the complex scalar field ' with a mass µ reads

L = �gijri'rj'
⇤ � µ

2
''

⇤
. (10.22)

Using this Lagrange density determine equations of motion of the complex
scalar field '.

I Solution: Corresponding equations of motion follow from Euler-Lagrange
equations. For the field '

⇤ they read

ri

✓
@L

@(ri'
⇤)

◆
� @L

@'⇤ = 0 (10.23)

At first, we determine the quantity

@L

@(ri'
⇤)

= �gijrj' (10.24)
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and
@L

@'⇤ = �µ2
'. (10.25)

Inserting the last two results into Euler-Lagrange equations (10.23) we
obtain

ri
�
�gijrj'

�
+ µ

2
' = 0

�rig
ij

| {z }
=0

rj'� g
ijrirj'+ µ

2
' = 0

�
riri � µ

2
�
' = 0

�
⇤� µ

2
�
' = 0. (10.26)

E6 Show that the d’Alambert operator ⇤ for scalar function ' can be written
in the form

⇤' =
⇣
@
i
@i � �i

ik@
k
⌘
'. (10.27)

I Solution: The validity of the equation (10.27) can be checked by direct
calculation:

⇤' = riri
' = ri

�
g
isrs'

�
= |rig

is = 0| = g
isrirs'

= |rs' = @s'| = g
isri(@s') = ri(@

i
') = @i@

i
'+ �i

is@
s
'

=
�
@i@

i + �i
is@

s
�
'. (10.28)

E7 Using the fomula

�i
ij =

1p
�g@j

p
�g, (10.29)

where is g the determinant of the metric gij , rewrite the Klein-Gordon
equation as


1p
�g@j

⇣
g
jkp�g@k

⌘
� µ

2

�
' = 0. (10.30)
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I Solution: We insert the relation (10.29) into (10.27) to obtain
⇣
@i@

i + �i
ik@

k � µ
2
⌘
' = 0

✓
@i@

i +
1p
�g@k

p
�g@k � µ

2

◆
' = 0


1p
�g

⇣p
�g@i@i + @k

p
�g@k

⌘
� µ

2

�
' = 0


1p
�g@i

�p
�g@i

�
� µ

2

�
' = 0. (10.31)

E8 Find equations of motion for a scalar field in the Schwarzschild black hole
background. Look for a solution in separated form.

I Solution: Non-zero covariant components of the metric tensor for Schwarzschild
spacetime read

gtt = �
✓
1� 2

r

◆
, grr =

✓
1� 2

r

◆�1

, g✓✓ = r
2
, g'' = r

2 sin2 ✓. (10.32)

The determinant of the metric is given by

g = �r4 sin2 ✓. (10.33)

We now express the equation (10.31) in terms of Schwarzschild metric
and we obtain

⇢
1

r2 sin ✓


@

@t

✓
g
tt
r
2 sin ✓

@

@t

◆
+

@

@r

✓
g
rr
r
2 sin ✓

@

@r

◆
+

+
@

@✓

✓
g
✓✓
r
2 sin2 ✓

@

@✓

◆
+

@

@'

✓
g
''

r
2 sin ✓

@

@'

◆�
� µ

2

�
� = 0 . (10.34)

After some algebra we have the final form

� r
3

r � 2

@
2�

@t2
+

1

sin2 ✓

@
2�

@'
+

@

@r

✓
r(r � 2)

@�

@r

◆
+

+
1

sin ✓

@

@✓

✓
sin ✓

@�

@✓
� µ

2
r
2�

◆
= 0 . (10.35)

Due to spherical symmetry and temporal independence of Schwarzschild
metric we seek the solution of this di↵erential equation in the form

� = e
�i!t

R(r)A(✓,'). (10.36)
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Now, let us insert (10.36) into (10.35) and calculate individual partial
derivatives first. We obtain

@�

@t
= �i!e�i!t

RA,
@
2�

@t2
= �!2

e
�i!t

RA, (10.37)

@�

@'
= e

�i!t
R
@A

@'
,

@
2�

@'2
= e

�i!t
R
@
2
A

@'2
, (10.38)

and

@

@r

✓
(r2 � 2r)

@�

@r

◆
= 2(r � 1)e�i!t

A
dR

dr
+ r(r � 2)e�i!t

A
d
2
R

dr2
, (10.39)

@

@✓

✓
sin ✓

@�

@✓

◆
= cos ✓e�i!t

R
@A

@✓
+ sin ✓e�i!t

R
@
2
A

@✓2
. (10.40)

Thus, we have arrived at the equation

r
3

r � 2
!
2 +

1

A sin2 ✓

@
2
A

@'2
+

2(r � 1)

R

dR

dr

+
r(r � 2)

R

d
2
R

dr2
+

cot ✓

R

@A

@✓
+

1

A

@
2
A

@✓2
� µ

2
r
2 = 0, (10.41)

This equation is clearly separable into radial and angular parts, i.e. we
write down this separation in symbolic way

P (r) = W (✓,'). (10.42)

Clearly, this equation must be fullfilled for any r, ✓ and ', i.e. both, left
and right sides must be equal to the same constant, say K. In this way
we get two equations

r(r � 2)
d
2
R

dr2
+ 2(r � 1)

dR

dr
+

✓
r
3
!
2

r � 2
� µ

2
r
2 �K

◆
R = 0 (10.43)

and
1

sin2 ✓

@
2
A

@'2
+ cot ✓

@A

@✓
+

@
2
A

@✓2
�KA = 0. (10.44)

E9* Assume a braneworld static black hole solution with the spacetime inter-
val

ds2 = �f(r)dt2 + f(r)�1dr2 + r
2(d✓2 + sin2 ✓d'2), (10.45)

where

f(r) =

✓
1� 2M

r
+

b

r2

◆
. (10.46)
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(A) Discuss existence/non-existence of the event horizon with respect to
the tidal charge parameter value b.

(B) Determine loci of the marginally stable and photon orbits.
(C) Determine Keplerian frequency ⌦K ⌘ u

'
/u

t (uµ is 4-velocity vector)
of test massive particle on circular orbit and discuss its properties
with respect to braneworld tidal charge parameter b.

(D) Determine frequency shift g of the radiation emitted from the source
on circular orbit and discuss its properties with respect to the tidal
charge parameter. Recall that g is defined as

g ⌘ kµu
µ|ob

kµu
µ|em

(10.47)

where is kµ the photon propagation 4�vector, uµ is the 4-velocity of
observer (ob)/emitter (em).

E10* Consider a scalar field ' of mass m determined by the Lagrangian density

L =
1

2
(r')2 + 1

2
m

2
'
2
. (10.48)

Discuss the violation of the following:

(A) Strong Energy Condition which states
✓
Tµ⌫ �

T

2
gµ⌫

◆
V

µ
V

⌫ � 0 (10.49)

where Tµ⌫ are components of stress-energy tensor T = T
µ
µ and V

µ

is any time-like 4-vector.
(B) Null Energy Condition stating

Tµ⌫k
µ
k
⌫ � 0 (10.50)

where is kµ any null 4-vector.
(C) Weak Energy Condition that states

Tµ⌫V
µ
V

⌫ � 0. (10.51)

Recall that the stress-energy tensor corresponding to scalar field ' reads

T
µ⌫ = rµ

'r⌫
'� 1

2
g
µ⌫
�
(r')2 +m

2
'
2
�
. (10.52)
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E11* Consider Kehagios-Sfetsos (K-S) compact object. Its geometry is given
by the spacetime interval

ds2 = �f(r)dt2 + 1

f(r)
dr2 + r

2(d✓2 + sin2 ✓d'2) (10.53)

where is

f(r) = 1 + r
2
!

"
1�

✓
1 +

4M

!r3

◆1/2
#
. (10.54)

Analyze the circular photon and massive particle orbits to show that

(A) there are two photon orbits for Ho¯ava parameter ! > !ms.ph = 2
3
p
3

(for ! < !ms.ph there are no photon circular orbits - why?)
(B) there is particular interval of Ho¯ava parameter !ms < ! < !ms.ph

where there exist two marginally stable orbits of massive particles.
(C) there is a static radius rstat in K-S spacetime, where a massive test

particle remains still relative to static observers at infinity and is
given by formula

rstat(!) = (2!)�1/3
. (10.55)
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Newton’s epilogue

It is good to remaind that Newton’s theory of gravity still holds in the regime of
small velocities and weak gravitational field. Let us in few problems recall the way
Newton’s theory make it possible to touch planets and stars. The key ingredients
are the law of gravitational force

~F = �GmM

r3
~r (11.1)

stating that the gravitational force is colinear with radius vector r but is of opposite
direction and its magnitude if proportional to masses m and M that are mutually
attracted and that the force magnitude decays with square root the mutual distance
of the bodies.

E1 Determine the gravitational constant G with torque pendulum.

I Solution: This method, to dermine gravitational constant, was performed
by sir Cavendish in the period 1797-1798. Let us consider a device depicted in
Fig. (11.1). At the end of the wire, there is a rod with two balls of masses m
attached to its endpoints. Two masses M attract the smaller masses m due
to mutual gravitational force. As the wire is twisted then its tension generates
torque ⌧ 0 against to the torque ⌧ of the rod. When angle ↵ = ↵0 the balance
between the two torques is established. Let us write down the mathematics
behind this experiment.

1. The gravitational attraction between bodies m and M is determined by
Newton’s law of gravity (11.2). The magnitude of gravitational force
between two bodies with masses m and M separated by the distance d
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reads
F = G

mM

d2
. (11.2)

2. Both small bodies act on the wire with the torque

⌧ =
L

2
F +

L

2
F = LF. (11.3)

3. The balance between the wire torque ⌧ 0 and the gravity force torque ⌧ is
established at angle ↵0. For small ↵0, Hooks law applies, i.e.

⌧
0 = �↵0 (11.4)

and the balance leads to the equation

|⌧ 0| = |⌧ | ) ↵0 = LF (11.5)

or, when using equation (11.2) for the force F , to the equation

↵0 = LG
mM

d2
. (11.6)

In order to determine the Gravitational constant the wire tension parameter
 must be determined. Let us remove, for a while, large masses M from the
experiment. We are left with the torque pendulum. The torque ⌧ and angular
momentum B are related by the equation

d ~B

dt
= ~⌧ (11.7)

where angular momentum ~B is given by formula

~B = I ~! (11.8)

where I is moment of inertia od pendulum and ~! is its angular frequency. In
therms of norms of ~⌧ and ~B the equation of motion of torque pendulum reads

I
d!

dt
= �↵ (11.9)

or better
d2↵

dt2
= �

I
↵. (11.10)
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Clearly, the solution to this equation will read

↵(t) = ↵0 cos

r


I
t (11.11)

assuming that the initial conditions are ↵(t = 0) = ↵0 and ↵̇(t = 0) = 0. The
corresponding angular frequency, clearly, is given by the formula

! =

r


I
. (11.12)

The period of this pendulum is easily determined to read

T =
2⇡

!
= 2⇡

r
I


. (11.13)

For the case of the rod with two same balls of masses m attached to its ends,
the moment of inertia reads

I = m

✓
L

2

◆2

+m

✓
L

2

◆2

=
1

2
mL

2
. (11.14)

The period of the torque pendulum and the coe�cient  are related by the
formula

 =
2⇡2

mL
2

T 2
. (11.15)

Finally putting (11.15) to (11.6) we arrive to formula, that determines the
value of the gravitational constant G in the form

G =
2⇡2

↵0d
2
L

M T 2
. (11.16)

E2 Using knowledge of the gravitational constant magnitude, determine mass of
the Earth.

I Solution: For simplicity, let us model the Earth with a sphere of ra-
dius RE (this simplification is su�cient for understanding the determination
of Earth’s mass). The acceleration of gravity, gE , at its surface is simply

gE = G
ME

R
2
E

(11.17)
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r

L/2

M
m

�

Figure 11.1: Schematic illustration of the Cavendish experiment, that determines
the magnitude of gravitational constant G.

which implies that the mass of the Earth is just

ME = gE
R

2
E

G
. (11.18)

We know G and RE , but we have to find a way to determine gE . Let us
consider, again, a simple pendulum experiment. We have a small ball of mass
m attached to massless rope of length l (see Fig.11.2).

The equation of motion of the pendulum is easily determined from the La-
grangian L, that in the case of our pendulum reads (note I = 1

2ml
2)

L =
1

2
v
2 +

1

2
I!

2 � gEmh (11.19)

=
3

4
ml

2
!
2 � gE ml(1� cos'). (11.20)
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l

m

�

Figure 11.2: A schematic figure illustrating configuration of the pendulum, to de-
termine gravitational acceleration, gE , at Earth’s surface.

The Euler-Lagrange equations

d

dt

✓
@L

@'̇

◆
� @L

@'
= 0 (11.21)

together with Lagrangian (11.20) to equations of motion

d!

dt
= �2

3

gE

l
sin'. (11.22)

For small values of ' last equation will read

d2'

dt2
' �2

3

gE

l
'. (11.23)

Of course, this is the equation for harmonic motion. With initial conditions
'(t = 0) = '0 and '̇(t = 0) = 0 we arrive to solution

'(t) = '0 cos

r
2gE
3l

t (11.24)

– 70 –



with angular frequency

! =

r
2gE
3l

. (11.25)

Corresponding period T of pendulum motion reads

T =
2⇡

!
= 2⇡

s
3l

2gE
. (11.26)

The gravitational acceleration at Earth’s surface is determined by the formula

gE = 4⇡2 l

T 2
. (11.27)

Putting last the formula into equation (11.18) we obtain relation that deter-
mines mass of the Earth

ME = 4⇡2R
2
E

G

l

T 2
. (11.28)

E3 Determine mass of the Sun and Planets from third Keplerian law.

I Solution: The Sun and a planet revolve around mutual center of mass
that determine the trajectory of the planet. It is an ellipse with major semiaxis
aP . If the period of planet motion is T then the third Keplerian law states

a
3
P

TP
=

1

4⇡2
(MS +MP ). (11.29)

Now, we already know the mass of one of the planets, the Earth. From equa-
tion (11.29) we determine mass of the Sun, MS , in terms of Earth orbital
parameters, i.e. we get the formula

MS = 4⇡2 a
3
E

T
2
E

�ME . (11.30)

Once we know the mass of the Sun, we determine, masses of other planets.
The corresponding formula reads

MP = 4⇡2 a
3
P

T
2
P

�MS . (11.31)
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