Informační systém Repo 

Human Gait Recognition from Motion Capture Data in Signature Poses

česky | in English

Přihlášení

eduID.cz
 
BALÁŽIA, Michal a Konstantinos N. PLATANIOTIS. Human Gait Recognition from Motion Capture Data in Signature Poses. IET Biometrics, London, UK: IET, 2017, roč. 6, č. 2, s. 129-137. ISSN 2047-4938.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Human Gait Recognition from Motion Capture Data in Signature Poses
Autoři BALÁŽIA, Michal (703 Slovensko, garant, domácí) a Konstantinos N. PLATANIOTIS (124 Kanada).
Vydání IET Biometrics, London, UK, IET, 2017, 2047-4938.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor Informatika
Stát vydavatele Spojené království
Utajení není předmětem státního či obchodního tajemství
WWW URL URL URL
Kód RIV RIV/00216224:14330/17:00095906
Organizace Fakulta informatiky - Masarykova univerzita
UT WoS 000396411600010
Klíčová slova česky rozpoznavani podle chuze
Klíčová slova anglicky gait recognition
Návaznosti MUNI/A/0915/2013. MUNI/A/1213/2014.
Změnil Změnil: RNDr. Daniel Jakubík, učo 139797. Změněno: 9. 8. 2018 00:55.
Anotace
Most contribution to the field of structure-based human gait recognition has been done through design of extraordinary gait features. Many research groups that address this topic introduce a unique combination of gait features, select a couple of well-known object classiers, and test some variations of their methods on their custom Kinect databases. For a practical system, it is not necessary to invent an ideal gait feature -- there have been many good geometric features designed -- but to smartly process the data there are at our disposal. This work proposes a gait recognition method without design of novel gait features; instead, we suggest an effective and highly efficient way of processing known types of features. Our method extracts a couple of joint angles from two signature poses within a gait cycle to form a gait pattern descriptor, and classifies the query subject by the baseline 1-NN classier. Not only are these poses distinctive enough, they also rarely accommodate motion irregularities that would result in confusion of identities. We experimentally demonstrate that our gait recognition method outperforms other relevant methods in terms of recognition rate and computational complexity. Evaluations were performed on an experimental database that precisely simulates street-level video surveillance environment.
Typ Název Vložil/a Vloženo Práva
24871 /2 Jakubík, D. 10. 3. 2017

Vlastnosti

Název
24871
Aplikace
Obnovit.
Adresa v ISu
https://repozitar.cz/auth/repo/24871/
Adresa ze světa
https://repozitar.cz/repo/24871/
Adresa do Správce
https://repozitar.cz/auth/repo/24871/?info
Ze světa do Správce
https://repozitar.cz/repo/24871/?info
Vloženo
Pá 10. 3. 2017 00:51

Práva

Právo číst
  • kdokoliv v Internetu
Právo vkládat
 
Právo spravovat
  • osoba RNDr. Daniel Jakubík, uco 139797
Atributy
 
bmt-arxiv.pdf   Verze souboru 10. 3. 2017

Vlastnosti

Název
bmt-arxiv.pdf
Adresa v ISu
https://repozitar.cz/auth/repo/24871/377981/
Adresa ze světa
https://repozitar.cz/repo/24871/377981/
Adresa do Správce
https://repozitar.cz/auth/repo/24871/377981/?info
Ze světa do Správce
https://repozitar.cz/repo/24871/377981/?info
Vloženo
Pá 10. 3. 2017 00:51

Práva

Právo číst
  • kdokoliv v Internetu
Právo vkládat
 
Právo spravovat
  • osoba Mgr. Lucie Vařechová, uco 106253
  • osoba RNDr. Daniel Jakubík, uco 139797
  • osoba Mgr. Jolana Surýnková, uco 220973
Atributy
 
premium-award.pdf  9. 8. 2018

Vlastnosti

Název
premium-award.pdf
Adresa v ISu
https://repozitar.cz/auth/repo/24871/556774/
Adresa ze světa
https://repozitar.cz/repo/24871/556774/
Adresa do Správce
https://repozitar.cz/auth/repo/24871/556774/?info
Ze světa do Správce
https://repozitar.cz/repo/24871/556774/?info
Vloženo
Čt 9. 8. 2018 00:55

Práva

Právo číst
  • kdokoliv v Internetu
Právo vkládat
 
Právo spravovat
  • osoba Mgr. Lucie Vařechová, uco 106253
  • osoba RNDr. Daniel Jakubík, uco 139797
  • osoba Mgr. Jolana Surýnková, uco 220973
Atributy
 
Vytisknout
Přidat do schránky Zobrazeno: 14. 8. 2018 12:16

Relevantní odkazy 

Další projekty

Službu Repozitar.cz provozuje Vývojový tým Informačního systému Masarykovy univerzity.


Nahoru | Aktuální datum a čas: 14. 8. 2018 12:16, 33. (lichý) týden

Kontakty: repozitar(zavináč/atsign)fi(tečka/dot)muni(tečka/dot)cz