Přehled o publikaci
2025
Inference of Pairwise Interactions from Strain Frequency Data Across Settings and Context-Dependent Mutual Invasibilities
LE, Thi Minh Thao, Sten MADEC a Erida GJINIZákladní údaje
Originální název
Inference of Pairwise Interactions from Strain Frequency Data Across Settings and Context-Dependent Mutual Invasibilities
Autoři
LE, Thi Minh Thao, Sten MADEC a Erida GJINI
Vydání
Bulletin of Mathematical Biology, Springer, 2025, 0092-8240
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizace
Přírodovědecká fakulta – Masarykova univerzita – Repozitář
UT WoS
001492246600001
EID Scopus
2-s2.0-105005593428
Klíčová slova anglicky
COMPETITION; EVOLUTION; DYNAMICS; VACCINE; COEXISTENCE; INFECTIONS; DIVERSITY; CARRIAGE; SHAPES
Změněno: 30. 5. 2025 00:50, RNDr. Daniel Jakubík
Anotace
V originále
We propose a method to estimate pairwise strain interactions from population-level frequencies across different endemic settings. We apply the framework of replicator dynamics, derived from a multi-strain SIS model with co-colonization, to extract from 5 datasets the fundamental backbone of strain interactions. In our replicator, each pairwise invasion fitness explicitly arises from local environmental context and trait variations between strains. We adopt the simplest formulation for multi-strain coexistence, where context is encoded in basic reproduction number R0 and mean global susceptibility to co-colonization k, and trait variations αij capture pairwise deviations from k. We integrate Streptococcus pneumoniae serotype frequencies and serotype identities collected from 5 environments: epidemiological surveys in Denmark, Nepal, Iran, Brazil and Mozambique, and mechanistically link their distributions. Our results have twofold implications. First, we offer a new proof-of-concept in the inference of multi-species interactions based on cross-sectional data. We also discuss 2 key aspects of the method: the site ordering for sequential fitting, and stability constraints on the dynamics. Secondly, we effectively estimate at high-resolution more than 70% of the 92×92 pneumococcus serotype interaction matrix in co-colonization, allowing for further projections and hypotheses testing. We show that, in these bacteria, both within- and between- serotype interaction coefficients’ distribution emerge to be unimodal, their difference in mean broadly reflecting stability assumptions on serotype coexistence. This framework enables further model calibration to global data: cross-sectional across sites, or longitudinal in one site over time, - and should allow a more robust and integrated investigation of intervention effects in such biodiverse ecosystems.