J 2025

Detection of early relapse in multiple myeloma patients

RŮŽIČKOVÁ, Tereza, Monika VLACHOVÁ, Lukáš PEČINKA, Monika BRYCHTOVÁ, Marek VEČEŘA et. al.

Základní údaje

Originální název

Detection of early relapse in multiple myeloma patients

Autoři

RŮŽIČKOVÁ, Tereza, Monika VLACHOVÁ, Lukáš PEČINKA, Monika BRYCHTOVÁ, Marek VEČEŘA, Lenka RADOVÁ, Simona ŠEVČÍKOVÁ, Marie JAROŠOVÁ, Josef HAVEL, Luděk POUR a Sabina ŠEVČÍKOVÁ

Vydání

Cell Division, LONDON, BMC, 2025, 1747-1028

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizace

Lékařská fakulta – Masarykova univerzita – Repozitář

UT WoS

001408777300001

EID Scopus

2-s2.0-85218041604

Klíčová slova anglicky

Multiple myeloma; Liquid biopsy; Relapse microRNA; MALDI-TOF MS; Small RNA seq; Machine learning

Návaznosti

LX22NPO5102, projekt VaV. MUNI/A/1587/2023, interní kód Repo. NU21-03-00076, projekt VaV.
Změněno: 15. 3. 2025 00:51, RNDr. Daniel Jakubík

Anotace

V originále

Background Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. Results Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. Conclusion Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.

Přiložené soubory