Přehled o publikaci
2025
Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers
KHODAM HAZRATI, Mehrnoosh, Lukáš SUKENÍK a Robert VÁCHAZákladní údaje
Originální název
Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers
Autoři
KHODAM HAZRATI, Mehrnoosh, Lukáš SUKENÍK a Robert VÁCHA
Vydání
Journal of Chemical Information and Modeling, 1549-960X, American Chemical Society, 2025, 1549-9596
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizace
Středoevropský technologický institut – Masarykova univerzita – Repozitář
UT WoS
001393323200001
Klíčová slova anglicky
FORCE-FIELD; CRYSTAL-STRUCTURE; CHARMM; GUI; VALIDATION; AMBER; POTENTIALS; DIFFUSION; EXTENSION; INSERTION
Návaznosti
GA20-20152S, projekt VaV. LM2015085, projekt VaV. LX22NPO5103, projekt VaV. 101001470, interní kód Repo.
Změněno: 29. 1. 2025 00:51, RNDr. Daniel Jakubík
Anotace
V originále
All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups. The bilayer structure is maintained by using external lateral potentials, which compensate for the lipid split. This split model enhances lateral lipid diffusion more than ten times, allowing faster and cheaper equilibration of large systems with different phospholipid types. The current model has been tested on membranes containing PSM, POPC, POPS, POPE, POPA, and cholesterol. We have also evaluated the interaction of the split model membranes with the Disheveled DEP domain and amphiphilic helix motif of the transcriptional repressor Opi1 as representative of peripheral proteins as well as the dimeric fragment of the epidermal growth factor receptor transmembrane domain and the Human A2A Adenosine of G protein-coupled receptors as representative of transmembrane proteins. The split model can predict the interaction sites of proteins and their preferred phospholipid type. Thus, the model could be used to identify lipid binding sites and equilibrate large membranes at an affordable computational cost.