D 2024

Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs

FILAKOVSKÝ, Marek; Tamio-Vesa NAKAJIMA; Jakub OPRSAL; Gianluca TASINATO; Uli WAGNER et. al.

Basic information

Original name

Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs

Authors

FILAKOVSKÝ, Marek; Tamio-Vesa NAKAJIMA; Jakub OPRSAL; Gianluca TASINATO and Uli WAGNER

Edition

Clermont-Ferrand, France, 41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, p. 1-19, 19 pp. 2024

Publisher

SCHLOSS DAGSTUHL, LEIBNIZ CENTER INFORMATICS

Other information

Language

English

Type of outcome

Proceedings paper

Country of publisher

Germany

Confidentiality degree

is not subject to a state or trade secret

Publication form

electronic version available online

Organization

Fakulta informatiky – Repository – Repository

ISBN

978-3-95977-311-9

ISSN

UT WoS

001300393400034

EID Scopus

2-s2.0-85187781179

Keywords in English

constraint satisfaction problem; hypergraph colouring; promise problem; topological methods

Links

CZ.02.01.01/00/22_010/0003229, interní kód Repo. EH22_010/0003229, research and development project.
Changed: 4/4/2025 00:50, RNDr. Daniel Jakubík

Abstract

V originále

A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1,..., k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring).

Files attached