Přehled o publikaci
2024
High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage
LAI, Yunjia, Jeremy P. KOELMEL, Douglas I. WALKER, Elliott James PRICE, Stefano PAPAZIAN et. al.Basic information
Original name
High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage
Authors
LAI, Yunjia, Jeremy P. KOELMEL, Douglas I. WALKER, Elliott James PRICE, Stefano PAPAZIAN, Katherine E. MANZ, Delia CASTILLA-FERNANDEZ, John A. BOWDEN, Vladimir NIKIFOROV, Arthur DAVID, Vincent BESSONNEAU, Bashar AMER, Suresh SEETHAPATHY, Xin HU, Elizabeth Z. LIN, Akrem JBEBLI, Brooklynn R. MCNEIL, Dinesh BARUPAL, Marina CERASA, Hongyu XIE, Vrinda KALIA, Renu NANDAKUMAR, Randolph SINGH, Zhenyu TIAN, Peng GAO, Yujia ZHAO, Jean FROMENT, Pawel ROSTKOWSKI, Saurabh DUBEY, Kateřina COUFALÍKOVÁ, Hana SELIČOVÁ, Helge HECHT, Sheng LIU, Hanisha H. UDHANI, Sophie RESTITUITO, Kam-Meng TCHOU-WONG, Lu KUN, Jonathan W. MARTIN, Benedikt WARTH, Krystal J. Godri POLLITT, Jana KLÁNOVÁ, Oliver FIEHN, Thomas O. METZ, Kurt D. PENNELL, Dean P. JONES and Gary W. MILLER
Edition
Technology, Washington, D.C. American Chemical Society, 2024, 0013-936X
Other information
Language
English
Type of outcome
Article in a journal
Country of publisher
United States of America
Confidentiality degree
is not subject to a state or trade secret
References:
Organization
Přírodovědecká fakulta – Repository – Repository
UT WoS
001280003200001
EID Scopus
2-s2.0-85198562065
Keywords in English
exposome; toxicants; high-resolutionmass spectrometry; chromatography; non-targetedanalysis; environmentalexposures; chemical space; metabolomics
Links
EF17_043/0009632, research and development project. LM2023069, research and development project. 857560, interní kód Repo.
Changed: 18/9/2024 00:50, RNDr. Daniel Jakubík
Abstract
V originále
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.