Přehled o publikaci
2023
Pair Programming with ChatGPT for Sampling and Estimation of Copulas
GÓRECKI, JanZákladní údaje
Originální název
Pair Programming with ChatGPT for Sampling and Estimation of Copulas
Autoři
GÓRECKI, Jan
Vydání
Computational Statistics, 2023, 0943-4062
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizace
Obchodně podnikatelská fakulta v Karviné – Slezská univerzita v Opavě – Repozitář
UT WoS
001110962300001
Klíčová slova anglicky
Human-AI collaboration; Analytically intractable problems; Prompt engineering; Natural language; Statistics
Návaznosti
GA21-03085S, projekt VaV.
Změněno: 13. 2. 2024 03:56, Bc. Ivana Glabazňová
Anotace
V originále
Without writing a single line of code by a human, an example Monte Carlo simulation-based application for stochastic dependence modeling with copulas is developed through pair programming involving a human partner and a large language model (LLM) fine-tuned for conversations. This process encompasses interacting with ChatGPT using both natural language and mathematical formalism. Under the careful supervision of a human expert, this interaction facilitated the creation of functioning code in MATLAB, Python, and R. The code performs a variety of tasks including sampling from a given copula model, evaluating the model’s density, conducting maximum likelihood estimation, optimizing for parallel computing on CPUs and GPUs, and visualizing the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a correct solution. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.