J
2024
PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning
ŠTOURAČ, Jan; Simeon BORKO; Rayyan Tariq KHAN; Petra POKORNÁ; Adam DOBIÁŠ et. al.
Základní údaje
Originální název
PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning
Autoři
ŠTOURAČ, Jan (203 Česká republika, domácí); Simeon BORKO (703 Slovensko, domácí); Rayyan Tariq KHAN (586 Pákistán, domácí); Petra POKORNÁ (203 Česká republika, domácí); Adam DOBIÁŠ (703 Slovensko, domácí); Joan PLANAS IGLESIAS (724 Španělsko, domácí); Stanislav MAZURENKO (643 Rusko, domácí); José Gaspar RANGEL PAMPLONA PIZARRO PINTO (620 Portugalsko, domácí); Veronika SZOTKOWSKÁ (203 Česká republika, domácí); Jaroslav ŠTĚRBA (203 Česká republika, domácí); Ondřej SLABÝ (203 Česká republika, domácí); Jiří DAMBORSKÝ (203 Česká republika, domácí) a David BEDNÁŘ (203 Česká republika, domácí)
Vydání
Briefings in Bioinformatics, OXFORD, Oxford University Press, 2024, 1467-5463
Další údaje
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/24:00135293
Organizace
Přírodovědecká fakulta – Masarykova univerzita – Repozitář
EID Scopus
2-s2.0-85180282604
Klíčová slova anglicky
cancer; oncology; personalized medicine; single-nucleotide polymorphism; targeted therapy
Návaznosti
EF17_043/0009632, projekt VaV. LX22NPO5102, projekt VaV. MUNI/A/1395/2022, interní kód Repo. NU20-03-00240, projekt VaV. TN02000109, projekt VaV. 857560, interní kód Repo. CZECRIN IV, velká výzkumná infrastruktura.
V originále
PredictONCO 1.0 is a unique web server that analyzes effects of mutations on proteins frequently altered in various cancer types. The server can assess the impact of mutations on the protein sequential and structural properties and apply a virtual screening to identify potential inhibitors that could be used as a highly individualized therapeutic approach, possibly based on the drug repurposing. PredictONCO integrates predictive algorithms and state-of-the-art computational tools combined with information from established databases. The user interface was carefully designed for the target specialists in precision oncology, molecular pathology, clinical genetics and clinical sciences. The tool summarizes the effect of the mutation on protein stability and function and currently covers 44 common oncological targets. The binding affinities of Food and Drug Administration/ European Medicines Agency -approved drugs with the wild-type and mutant proteins are calculated to facilitate treatment decisions. The reliability of predictions was confirmed against 108 clinically validated mutations. The server provides a fast and compact output, ideal for the often time-sensitive decision-making process in oncology. Three use cases of missense mutations, (i) K22A in cyclin-dependent kinase 4 identified in melanoma, (ii) E1197K mutation in anaplastic lymphoma kinase 4 identified in lung carcinoma and (iii) V765A mutation in epidermal growth factor receptor in a patient with congenital mismatch repair deficiency highlight how the tool can increase levels of confidence regarding the pathogenicity of the variants and identify the most effective inhibitors. The server is available at https://loschmidt.chemi.muni.cz/predictonco.
Zobrazeno: 16. 7. 2025 10:47