J 2023

Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma

BOHOŠOVÁ, Júlia, Kateřina KOŽELKOVÁ, Dagmar AL TUKMACHI, Karolína TRACHTOVÁ, Ondřej NAAR et. al.

Základní údaje

Originální název

Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma

Autoři

BOHOŠOVÁ, Júlia (703 Slovensko, domácí), Kateřina KOŽELKOVÁ (203 Česká republika, domácí), Dagmar AL TUKMACHI (203 Česká republika, domácí), Karolína TRACHTOVÁ (203 Česká republika, domácí), Ondřej NAAR (203 Česká republika, domácí), Michaela RUČKOVÁ (203 Česká republika, domácí), Eva KOLÁRIKOVÁ (703 Slovensko, domácí), Michal STANÍK (703 Slovensko, domácí), Alexandr POPRACH (203 Česká republika, domácí) a Ondřej SLABÝ (203 Česká republika, garant, domácí)

Vydání

Journal of cancer research and clinical oncology, NEW YORK, Springer, 2023, 0171-5216

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Kód RIV

RIV/00216224:14110/23:00131078

Organizace

Lékařská fakulta – Masarykova univerzita – Repozitář

DOI

http://dx.doi.org/10.1007/s00432-023-04700-7

UT WoS

000967659600001

Klíčová slova anglicky

Long non-coding RNA; Diagnosis; Prognosis; Biomarker; Early relapse; Next-generation sequencing

Návaznosti

LX22NPO5102, projekt VaV. NV18-03-00554, projekt VaV. NCMG II, velká výzkumná infrastruktura.
Změněno: 16. 10. 2024 00:50, RNDr. Daniel Jakubík

Anotace

V originále

PurposeRenal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients.MethodsGlobal expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients.ResultsSequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%.ConclusionIn our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
Zobrazeno: 16. 11. 2024 11:19