Přehled o publikaci
2020
A Haloalkane Dehalogenase from Saccharomonospora viridis Strain DSM 43017, a Compost Bacterium with Unusual Catalytic Residues, Unique (S)-Enantiopreference, and High Thermostability
CHMELOVÁ, Klaudia; Eva ŠEBESTOVÁ; Veronika LIŠKOVÁ; Andy BEIER; David BEDNÁŘ et. al.Základní údaje
Originální název
A Haloalkane Dehalogenase from Saccharomonospora viridis Strain DSM 43017, a Compost Bacterium with Unusual Catalytic Residues, Unique (S)-Enantiopreference, and High Thermostability
Autoři
CHMELOVÁ, Klaudia (703 Slovensko, domácí); Eva ŠEBESTOVÁ (203 Česká republika, domácí); Veronika LIŠKOVÁ (203 Česká republika, domácí); Andy BEIER (276 Německo, domácí); David BEDNÁŘ (203 Česká republika, domácí); Zbyněk PROKOP (203 Česká republika, domácí); Radka CHALOUPKOVÁ (203 Česká republika, domácí) a Jiří DAMBORSKÝ (203 Česká republika, garant, domácí)
Vydání
Applied and Environmental Microbiology, Washington, D.C. American Society for Microbiology, 2020, 0099-2240
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14310/20:00114589
Organizace
Přírodovědecká fakulta – Masarykova univerzita – Repozitář
UT WoS
000566697600032
EID Scopus
2-s2.0-85089787195
Klíčová slova anglicky
haloalkane dehalogenase; (S)-enantiopreference; thermophilic bacterium; catalytic residues; halide-stabilizing residues; dehalogenase; enantioselectivity; haloalkane; kinetics; mutagenesis; structure; substrate specificity; thermostability
Návaznosti
EF16_013/0001761, projekt VaV. GA17-24321S, projekt VaV. LM2015047, projekt VaV. LM2015055, projekt VaV. 814418, interní kód Repo.
Změněno: 16. 2. 2023 04:23, RNDr. Daniel Jakubík
Anotace
V originále
Haloalkane dehalogenases can cleave a carbon-halogen bond in a broad range of halogenated aliphatic compounds. However, a highly conserved catalytic pentad composed of a nucleophile, a catalytic base, a catalytic acid, and two halide-stabilizing residues is required for their catalytic activity. Only a few family members, e.g., DsaA, DmxA, or DmrB, remain catalytically active while employing a single halide-stabilizing residue. Here, we describe a novel haloalkane dehalogenase, DsvA, from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017, possessing one canonical halide-stabilizing tryptophan (W125). At the position of the second halide-stabilizing residue, DsvA contains the phenylalanine F165, which cannot stabilize the halogen anion released during the enzymatic reaction by a hydrogen bond. Based on the sequence and structural alignments, we identified a putative second halide-stabilizing tryptophan (W162) located on the same a-helix as F165, but on the opposite side of the active site. The potential involvement of this residue in DsvA catalysis was investigated by the construction and biochemical characterization of the three variants, DsvA01 (F165W), DsvA02 (W162F), and DsvA03 (W162F and F165W). Interestingly, DsvA exhibits a preference for the (S)- over the (R)-enantiomers of beta-bromoalkanes, which has not been reported before for any characterized haloalkane dehalogenase. Moreover, DsvA shows remarkable operational stability at elevated temperatures. The present study illustrates that protein sequences possessing an unconventional composition of catalytic residues represent a valuable source of novel biocatalysts. IMPORTANCE The present study describes a novel haloalkane dehalogenase, DsvA, originating from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017. We report its high thermostability, remarkable operational stability at high temperatures, and an (S)-enantiopreference, which makes this enzyme an attractive biocatalyst for practical applications. Sequence analysis revealed that DsvA possesses an unusual composition of halide-stabilizing tryptophan residues in its active site. We constructed and biochemically characterized two single point mutants and one double point mutant and identified the noncanonical halide-stabilizing residue. Our study underlines the importance of searching for noncanonical catalytic residues in protein sequences.