Přehled o publikaci
2019
Computational Design of Stable and Soluble Biocatalysts
MUSIL, Miloš, Hannes KONEGGER, Jiří HON, David BEDNÁŘ, Jiří DAMBORSKÝ et. al.Základní údaje
Originální název
Computational Design of Stable and Soluble Biocatalysts
Autoři
MUSIL, Miloš (203 Česká republika, domácí), Hannes KONEGGER (40 Rakousko, domácí), Jiří HON (203 Česká republika, domácí), David BEDNÁŘ (203 Česká republika, domácí) a Jiří DAMBORSKÝ (203 Česká republika, garant, domácí)
Vydání
ACS Catalysis, Washington, D.C. American Chemical Society, 2019, 2155-5435
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14310/19:00113346
Organizace
Přírodovědecká fakulta – Masarykova univerzita – Repozitář
UT WoS
000458707000028
EID Scopus
2-s2.0-85059802317
Klíčová slova anglicky
aggregation; computational design; force field; expressibility; machine learning; phylogenetic analysis; enzyme stability; enzyme solubility
Návaznosti
EF16_013/0001761, projekt VaV. LM2015047, projekt VaV. LM2015051, projekt VaV. LM2015055, projekt VaV.
Změněno: 16. 2. 2023 04:23, RNDr. Daniel Jakubík
Anotace
V originále
Natural enzymes are delicate biomolecules possessing only marginal thermodynamic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need to design optimized protein sequences that maximize stability, solubility, and activity over a wide range of temperatures and pH values in buffers of different composition and in the presence of organic cosolvents. This has created great interest in using computational methods to enhance biocatalysts' robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses, and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately using available force fields, and the number of sequences available for phylogenetic analyses is growing. In addition, complex computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions. Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the computational design of stable and soluble biocatalysts.