J 2019

Computational Design of Stable and Soluble Biocatalysts

MUSIL, Miloš, Hannes KONEGGER, Jiří HON, David BEDNÁŘ, Jiří DAMBORSKÝ et. al.

Základní údaje

Originální název

Computational Design of Stable and Soluble Biocatalysts

Autoři

MUSIL, Miloš (203 Česká republika, domácí), Hannes KONEGGER (40 Rakousko, domácí), Jiří HON (203 Česká republika, domácí), David BEDNÁŘ (203 Česká republika, domácí) a Jiří DAMBORSKÝ (203 Česká republika, garant, domácí)

Vydání

ACS Catalysis, Washington, D.C. American Chemical Society, 2019, 2155-5435

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/00216224:14310/19:00113346

Organizace

Přírodovědecká fakulta – Masarykova univerzita – Repozitář

UT WoS

000458707000028

EID Scopus

2-s2.0-85059802317

Klíčová slova anglicky

aggregation; computational design; force field; expressibility; machine learning; phylogenetic analysis; enzyme stability; enzyme solubility

Návaznosti

EF16_013/0001761, projekt VaV. LM2015047, projekt VaV. LM2015051, projekt VaV. LM2015055, projekt VaV.
Změněno: 16. 2. 2023 04:23, RNDr. Daniel Jakubík

Anotace

V originále

Natural enzymes are delicate biomolecules possessing only marginal thermodynamic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need to design optimized protein sequences that maximize stability, solubility, and activity over a wide range of temperatures and pH values in buffers of different composition and in the presence of organic cosolvents. This has created great interest in using computational methods to enhance biocatalysts' robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses, and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately using available force fields, and the number of sequences available for phylogenetic analyses is growing. In addition, complex computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions. Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the computational design of stable and soluble biocatalysts.

Přiložené soubory