J
2021
FireProt(DB): database of manually curated protein stability data
ŠTOURAČ, Jan; Juraj DUBRAVA; Miloš MUSIL; Jana HORÁČKOVÁ; Jiří DAMBORSKÝ et. al.
Základní údaje
Originální název
FireProt(DB): database of manually curated protein stability data
Autoři
ŠTOURAČ, Jan (203 Česká republika, domácí); Juraj DUBRAVA (203 Česká republika); Miloš MUSIL (203 Česká republika, domácí); Jana HORÁČKOVÁ (203 Česká republika, domácí); Jiří DAMBORSKÝ (203 Česká republika, garant, domácí); Stanislav MAZURENKO (643 Rusko, domácí) a David BEDNÁŘ (203 Česká republika, domácí)
Vydání
Nucleic Acids Research, Oxford, Oxford University Press, 2021, 0305-1048
Další údaje
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/21:00119185
Organizace
Přírodovědecká fakulta – Masarykova univerzita – Repozitář
EID Scopus
2-s2.0-85099428147
Klíčová slova anglicky
SEQUENCE; PREDICTION; VARIANTS
Návaznosti
EF17_043/0009632, projekt VaV. EF19_074/0012727, projekt VaV. GJ20-15915Y, projekt VaV. LM2018121, projekt VaV. TN01000013, projekt VaV. 857560, interní kód Repo.
V originále
The majority of naturally occurring proteins have evolved to function under mild conditions inside the living organisms. One of the critical obstacles for the use of proteins in biotechnological applications is their insufficient stability at elevated temperatures or in the presence of salts. Since experimental screening for stabilizing mutations is typically laborious and expensive, in silico predictors are often used for narrowing down the mutational landscape. The recent advances in machine learning and artificial intelligence further facilitate the development of such computational tools. However, the accuracy of these predictors strongly depends on the quality and amount of data used for training and testing, which have often been reported as the current bottleneck of the approach. To address this problem, we present a novel database of experimental thermostability data for single-point mutants FireProt(DB). The database combines the published datasets, data extracted manually from the recent literature, and the data collected in our laboratory. Its user interface is designed to facilitate both types of the expected use: (i) the interactive explorations of individual entries on the level of a protein or mutation and (ii) the construction of highly customized and machine learning-friendly datasets using advanced searching and filtering. The database is freely available at https://loschmidt.chemi.muni.cz/fireprotdb.
Zobrazeno: 19. 7. 2025 16:03