J 2021

FireProt(DB): database of manually curated protein stability data

ŠTOURAČ, Jan; Juraj DUBRAVA; Miloš MUSIL; Jana HORÁČKOVÁ; Jiří DAMBORSKÝ et. al.

Základní údaje

Originální název

FireProt(DB): database of manually curated protein stability data

Autoři

ŠTOURAČ, Jan (203 Česká republika, domácí); Juraj DUBRAVA (203 Česká republika); Miloš MUSIL (203 Česká republika, domácí); Jana HORÁČKOVÁ (203 Česká republika, domácí); Jiří DAMBORSKÝ (203 Česká republika, garant, domácí); Stanislav MAZURENKO (643 Rusko, domácí) a David BEDNÁŘ (203 Česká republika, domácí)

Vydání

Nucleic Acids Research, Oxford, Oxford University Press, 2021, 0305-1048

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Kód RIV

RIV/00216224:14310/21:00119185

Organizace

Přírodovědecká fakulta – Masarykova univerzita – Repozitář

DOI

http://dx.doi.org/10.1093/nar/gkaa981

UT WoS

000608437800041

EID Scopus

2-s2.0-85099428147

Klíčová slova anglicky

SEQUENCE; PREDICTION; VARIANTS

Návaznosti

EF17_043/0009632, projekt VaV. EF19_074/0012727, projekt VaV. GJ20-15915Y, projekt VaV. LM2018121, projekt VaV. TN01000013, projekt VaV. 857560, interní kód Repo.
Změněno: 16. 2. 2023 04:23, RNDr. Daniel Jakubík

Anotace

V originále

The majority of naturally occurring proteins have evolved to function under mild conditions inside the living organisms. One of the critical obstacles for the use of proteins in biotechnological applications is their insufficient stability at elevated temperatures or in the presence of salts. Since experimental screening for stabilizing mutations is typically laborious and expensive, in silico predictors are often used for narrowing down the mutational landscape. The recent advances in machine learning and artificial intelligence further facilitate the development of such computational tools. However, the accuracy of these predictors strongly depends on the quality and amount of data used for training and testing, which have often been reported as the current bottleneck of the approach. To address this problem, we present a novel database of experimental thermostability data for single-point mutants FireProt(DB). The database combines the published datasets, data extracted manually from the recent literature, and the data collected in our laboratory. Its user interface is designed to facilitate both types of the expected use: (i) the interactive explorations of individual entries on the level of a protein or mutation and (ii) the construction of highly customized and machine learning-friendly datasets using advanced searching and filtering. The database is freely available at https://loschmidt.chemi.muni.cz/fireprotdb.
Zobrazeno: 19. 7. 2025 16:03