u 2012

Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

NOVÁK, David; Petr VOLNÝ a Pavel ZEZULA

Základní údaje

Originální název

Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

Autoři

NOVÁK, David (203 Česká republika, garant, domácí); Petr VOLNÝ (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)

Vydání

eprint arXiv:1206.2510, 2012

Nakladatel

Cornell University Library

Další údaje

Jazyk

angličtina

Typ výsledku

Účelové publikace

Obor

Informatika

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Kód RIV

RIV/00216224:14330/12:00057555

Organizace

Fakulta informatiky – Masarykova univerzita – Repozitář

Klíčová slova anglicky

subsequence matching; metric indexing; framework

Návaznosti

GAP103/10/0886, projekt VaV. GPP202/10/P220, projekt VaV.
Změněno: 1. 9. 2020 12:46, RNDr. Daniel Jakubík

Anotace

V originále

Subsequence matching has appeared to be an ideal approach for solving many problems related to the fields of data mining and similarity retrieval. It has been shown that almost any data class (audio, image, biometrics, signals) is or can be represented by some kind of time series or string of symbols, which can be seen as an input for various subsequence matching approaches. The variety of data types, specific tasks and their partial or full solutions is so wide that the choice, implementation and parametrization of a suitable solution for a given task might be complicated and time-consuming; a possibly fruitful combination of fragments from different research areas may not be obvious nor easy to realize. The leading authors of this field also mention the implementation bias that makes difficult a proper comparison of competing approaches. Therefore we present a new generic Subsequence Matching Framework (SMF) that tries to overcome the aforementioned problems by a uniform frame that simplifies and speeds up the design, development and evaluation of subsequence matching related systems. We identify several relatively separate subtasks solved differently over the literature and SMF enables to combine them in straightforward manner achieving new quality and efficiency. This framework can be used in many application domains and its components can be reused effectively. Its strictly modular architecture and openness enables also involvement of efficient solutions from different fields, for instance efficient metric-based indexes. This is an extended version of a paper published on DEXA 2012.
Zobrazeno: 4. 7. 2025 18:52