D 2017

An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study

BLAHUTA, Jiří; Tomáš SOUKUP a Jiří MARTINŮ

Základní údaje

Originální název

An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study

Autoři

BLAHUTA, Jiří (203 Česká republika, garant, domácí); Tomáš SOUKUP (203 Česká republika) a Jiří MARTINŮ (203 Česká republika, domácí)

Vydání

Volume 10305. Cham, Lecture Notes in Computer Science, od s. 236-245, 10 s. 2017

Nakladatel

Springer Verlag

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/47813059:19240/17:A0000123

Organizace

Filozoficko-přírodovědecká fakulta – Slezská univerzita v Opavě – Repozitář

ISBN

978-3-319-59152-0

ISSN

EID Scopus

2-s2.0-85020528052

Klíčová slova anglicky

B-images; B-MODE; Neural networks ultrasound; Parkinson’s disease; Stroke ultrasound; Substantia nigra; Ultrasound

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

LQ1602, projekt VaV.
Změněno: 20. 3. 2018 13:31, Mgr. Kamil Matula

Anotace

V originále

The presented paper is focused on ways of digital image analysis of ultrasound B-images based on echogenicity investigation in determined Region of Interest (ROI). An expert system has been developed in the course of the research. The goal of the paper is to demonstrate how to interconnect automatic finding of the position of the substantia nigra using Artificial Neural Network (ANN) with supervised learning and ROI-based image analysis. For substantia nigra is able to detect the position using ANN from B-image in transverse thalamic plane. From this is computed echogenicity index grade inside the ROI as parkinsonism feature. The methodology is well applicable for a set of images with the same resolution. The results have shown practical application of ANN learning in this case. The second part of the paper is focused on detection of atherosclerotic plaques. An experimental prospective study shown the using ANN can be highly time-consuming problem due to complexity of B-images. The plaques have no standardized shape and size in comparison with SN. To objective appraisal of using ANN to automatic finding atherosclerotic plaque in B-image we need a large set of images of normal and pathological state. Although it is very important using ANN, automatic detection in highly time-consuming problem for ANN training.