Přehled o publikaci
2017
An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study
BLAHUTA, Jiří; Tomáš SOUKUP a Jiří MARTINŮZákladní údaje
Originální název
An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study
Autoři
BLAHUTA, Jiří (203 Česká republika, garant, domácí); Tomáš SOUKUP (203 Česká republika) a Jiří MARTINŮ (203 Česká republika, domácí)
Vydání
Volume 10305. Cham, Lecture Notes in Computer Science, od s. 236-245, 10 s. 2017
Nakladatel
Springer Verlag
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/47813059:19240/17:A0000123
Organizace
Filozoficko-přírodovědecká fakulta – Slezská univerzita v Opavě – Repozitář
ISBN
978-3-319-59152-0
ISSN
EID Scopus
2-s2.0-85020528052
Klíčová slova anglicky
B-images; B-MODE; Neural networks ultrasound; Parkinson’s disease; Stroke ultrasound; Substantia nigra; Ultrasound
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
LQ1602, projekt VaV.
Změněno: 20. 3. 2018 13:31, Mgr. Kamil Matula
Anotace
V originále
The presented paper is focused on ways of digital image analysis of ultrasound B-images based on echogenicity investigation in determined Region of Interest (ROI). An expert system has been developed in the course of the research. The goal of the paper is to demonstrate how to interconnect automatic finding of the position of the substantia nigra using Artificial Neural Network (ANN) with supervised learning and ROI-based image analysis. For substantia nigra is able to detect the position using ANN from B-image in transverse thalamic plane. From this is computed echogenicity index grade inside the ROI as parkinsonism feature. The methodology is well applicable for a set of images with the same resolution. The results have shown practical application of ANN learning in this case. The second part of the paper is focused on detection of atherosclerotic plaques. An experimental prospective study shown the using ANN can be highly time-consuming problem due to complexity of B-images. The plaques have no standardized shape and size in comparison with SN. To objective appraisal of using ANN to automatic finding atherosclerotic plaque in B-image we need a large set of images of normal and pathological state. Although it is very important using ANN, automatic detection in highly time-consuming problem for ANN training.