J
2018
Gait Recognition from Motion Capture Data
BALÁŽIA, Michal a Petr SOJKA
Základní údaje
Originální název
Gait Recognition from Motion Capture Data
Autoři
BALÁŽIA, Michal a Petr SOJKA
Vydání
ACM Transactions on Multimedia Computing, Communications and Applications (TOMM), special issue on Representation, Analysis and Recognition of 3D Humans, New York, USA, ACM, 2018, 1551-6857
Další údaje
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14330/18:00102051
Organizace
Fakulta informatiky – Masarykova univerzita – Repozitář
EID Scopus
2-s2.0-85042907000
Klíčová slova česky
rozpoznávání podle chůze
Klíčová slova anglicky
gait recognition
Návaznosti
MUNI/A/0992/2016, interní kód Repo. MUNI/A/0997/2016, interní kód Repo.
V originále
Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms thirteen relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, that means, we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.
Zobrazeno: 31. 12. 2025 17:07