J 2018

Gait Recognition from Motion Capture Data

BALÁŽIA, Michal a Petr SOJKA

Základní údaje

Originální název

Gait Recognition from Motion Capture Data

Autoři

BALÁŽIA, Michal a Petr SOJKA

Vydání

ACM Transactions on Multimedia Computing, Communications and Applications (TOMM), special issue on Representation, Analysis and Recognition of 3D Humans, New York, USA, ACM, 2018, 1551-6857

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

Informatika

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL, URL

Kód RIV

RIV/00216224:14330/18:00102051

Organizace

Fakulta informatiky – Masarykova univerzita – Repozitář

UT WoS

000433517100008

EID Scopus

2-s2.0-85042907000

Klíčová slova česky

rozpoznávání podle chůze

Klíčová slova anglicky

gait recognition

Návaznosti

MUNI/A/0992/2016, interní kód Repo. MUNI/A/0997/2016, interní kód Repo.
Změněno: 1. 10. 2020 01:51, RNDr. Daniel Jakubík

Anotace

V originále

Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms thirteen relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, that means, we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.
Zobrazeno: 31. 12. 2025 17:07