2013
			
	    
	
	
    Disc Piezoelectric Ceramic Transformers
ERHART, Jiří; Petr PŮLPÁN; Vít LÉDL; Roman DOLEČEK; Pavel PSOTA et. al.Základní údaje
Originální název
Disc Piezoelectric Ceramic Transformers
	Autoři
ERHART, Jiří (203 Česká republika, domácí); Petr PŮLPÁN (203 Česká republika, domácí); Vít LÉDL (203 Česká republika, domácí); Roman DOLEČEK (203 Česká republika, domácí) a Pavel PSOTA (203 Česká republika, domácí)
			Vydání
 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 0885-3010
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
Elektronika a optoelektronika, elektrotechnika
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Odkazy
Kód RIV
RIV/46747885:24510/13:#0000989
		Organizace
Fakulta přírodovědně-humanitní a pedagogická – Technická univerzita v Liberci – Repozitář
			UT WoS
000322826700010
		Klíčová slova anglicky
piezoelectric transformer
		Návaznosti
GAP102/10/1139, projekt VaV. 
			
				
				Změněno: 10. 3. 2015 13:50, RNDr. Daniel Jakubík
				
		Anotace
V originále
In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.